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ABSTRACT* 
The focus of this paper is on thermo-elastic topology 

optimization where the structure is subject to both mechanical 
and thermal loads. Such problems are of significant importance, 
for example, in the aircraft industry where structures subject to 
aerodynamic forces and thermal-gradients must be optimized.  

A popular strategy for solving such problems is Solid 
Isotropic Material with Penalization (SIMP) where pseudo-
densities serve as optimization parameters. Yet another strategy 
is the Rational Approximation of Material Properties (RAMP) 
that overcomes some of the deficiencies of SIMP. Both methods 
fundamentally rely on parameterization of the material 
properties as a function of the pseudo-densities. 

Here we consider an alternate level-set approach that relies 
on the concept of topological sensitivity. The advantages of the 
proposed method over SIMP and RAMP are: (1) ad hoc 
material parameterization is not required (2) the stresses are 
well-defined at all points within the evolving topology and (3) 
the underlying stiffness matrices are always well-conditioned. 
The proposed method is illustrated through numerical 
experiments. 

1. INTRODUCTION 

Topology optimization has rapidly evolved from an 
academic exercise into an exciting discipline with numerous 
industrial applications [1], [2]. Applications include 
optimization of aircraft components [3], [4], spacecraft modules 
[5], automobiles components [6], cast components [7], 
compliant mechanisms [8]–[11], etc. 

The focus of this paper is on thermo-elastic topology 
optimization (see Figure 1) where the structure is subject to 
both mechanical and thermal loads.  

                                                        
 

 
Figure 1: A thermo-elastic problem.  

The goal is to find the optimal topology of minimum 
volume, subject to stress and other constraints. Unlike in pure 
elastic problems, in thermo-elastic problems, the displacements 
and stresses are computed after taking into account the 
additional thermal load. This poses both new theoretical and 
computational challenges discussed later in the paper. 

In Section 2, popular methods for stress-constrained thermo-
elastic problems are reviewed. Some of the challenges that 
remain are identified. In Section 3, we provide a brief review of 
necessary technical background. Then, in Section 4, the 
proposed method and its implementation are discussed. In 
Section 5, numerical experiments are presented, followed by 
conclusions in Section 6. 

2. LITERATURE REVIEW 

Current strategies for solving thermo-elastic topology 
optimization problems can be classified into the following types: 
homogenization, Solid Isotropic Material with Penalization 
(SIMP), Rational Approximation of Material Properties (RAMP) 
and level-set. 
Homogenization 

In a pioneering work, the authors of [12] adopted the 
homogenization approach [13] to solve on thermo-elastic 
topology optimization problems. In particular, they combined 
asymptotic homogenization on periodic microstructures with 
thermo-elastic finite element formulations to highlight an 
important characteristic of such problems, i.e. the final topology 
of the structure is strongly affected by thermal gradient. From a 
computational perspective, the increase in check-board patterns 
for thermo-elastic problems was also observed; methods to 
overcome these issues were also proposed. 
Solid Isotropic Material with Penalization (SIMP) 
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The most popular approach for topology optimization 
problems is SIMP. The primary advantage of SIMP is that it is 
well-understood and relatively easy to implement [14]. Indeed, 
SIMP has been applied to a variety of topology optimization 
problems ranging from fluids to non-linear structural mechanics. 

In [15], the compliance of a thermo-elastic problem was 
minimized using SIMP. In [16], the nonlinearity of thermo-
elastic topology optimization problem was explored through 
composites of unusual thermal expansion coefficients. In [17], a 
design scenario is presented using SIMP for thermo-elastic 
topology optimization of stiffening thermally restrained thin 
shell structures. 

The ‘singularity-problem’ associated with zero-density 
elements in SIMP require careful treatment, for example 
through epsilon-methods [18], [19]. Secondly, the ill-
conditioning of the stiffness matrices, due to low-density 
elements, can lead to high computational costs for iterative 
solvers [20], [21]. Challenges include stress-ambiguity and 
accuracy over gray-elements [22]. 
RAMP 

One of the challenges with the SIMP model is that the 
material interpolation exhibits zero slope at zero density, posing 
challenges in thermo-elastic problems [23], [24]. To overcome 
this deficiency, the Rational Approximation of Material 
Properties (RAMP) was developed by Stolpe and Svanberg [23]; 
its superior performance over SIMP was demonstrated in [24]. 
In [25], a new stress-relaxation method was proposed to include 
stress constraints, and a group-wise p-norm stress aggregation 
was adapted for better stress control. 
Level-Set 

The level-set strategy is gaining popularity for solving 
topology optimization problems for several reasons: the 
boundary is well-defined at all times, the stress-singularity 
problem does not arise, and the stiffness matrices are typically 
well-conditioned; see [26] for a recent review and comparison 
of level-set based methods in structural topology optimization. 

For purely elastic problems, one of the earliest 
implementation of level-set based stress-constrained topology 
optimization appears in [27] where the authors proposed to 
minimize a domain integral of stress subject to material volume 
constraint. A topological level-set method for handling stress 
and displacement constraints in single-load problems was 
proposed in [28]. 

For thermo-elastic problems, the authors of [29] adopted a 
level-set approach to solve a compliance minimization problem, 
with a volumetric constraint. The primary advantages of the 
level-set method over SIMP, namely, a well-defined boundary 
and no intermediate densities, are highlighted and demonstrated.  
Proposed 

In this paper, we once again adopt the level-set method due 
to its inherent advantages. However, instead of relying on the 
Hamilton-Jacobi equations for level-set propagation, the 
topology sensitivity for thermo-elastic problems is exploited. 
Thus, the domain need not be initialized with holes. In addition, 
stress and compliance constraints are considered in the present 
formulation. 

3. TECHNICAL BACKGROUND 

3.1 Thermo-elasticity 

Finite element formulations of (weakly-coupled) thermo-
elastic problems essentially reduce to solving two linear algebra 
problems: 

 t
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where: 

 

:  Temperature field
:  Displacement field

:  Thermal stiffness matrix
:  Structural stiffness matrix
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The thermal load vector in Equation (1) is formed via [25]: 
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:  Nodal thermal load vector for each element
:  Element domain
:  Element strain-displacement matrix

D :  Element elasticity matrix

:  Element thermal strain vector
:  Thermal expansion coefficient

th
e

e

e

e
th
e

f

B

ε
α

Ω

0
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Finally, the stresses are obtained by subtracting the thermal 
strain from the total strain, and multiplying the resulting strain 
by the material tensor: 
 th

e e e e e eD B u Dσ ε= −   (4) 

Further explanations and details may be found, for example, 
in [30].  The compliance for a thermo-elastic system is defined 
as: 
 ( )th T TJ f f u u Ku= + =   (5) 

Observe that Equation (1) represents a weakly-coupled 
problem where the thermal field influences the displacements, 
but not the inverse. Strongly-coupled thermo-elastic problems 
are beyond the scope of this paper. 

3.2 PareTO Method 

The proposed method for thermo-elastic optimization builds 
upon the PareTO method for pure elasticity problems described 
in [21], [31]. The concepts underlying PareTO are therefore 
summarized next. 

PareTO is a topological-sensitivity [32] based method, 
whose unique feature is that it traces the pareto-optimal curve 
governing the desired objective ϕ  (such as compliance) and 
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the volume fraction. In other words, the PareTO method is 
designed to solve the two-objective topology optimization 
problem: 

 

 { , }

subject to
...

D
Min ϕ
Ω⊂

Ω

  (6) 

For example, Figure 2 illustrates the pareto-optimal curve 
and topologies for a 2D compliance minimization problem. The 
optimization process starts at a volume-fraction of 1 (at the 
bottom right), and the pareto-optimal curve is traced in small 
decrements of volume fractions. The optimization terminates if 
the constraints are violated.  

 
Figure 2: The pareto-optimal curve and topologies. 

Topological sensitivity, a central concept in PareTO, 
captures the first order impact of inserting a small circular hole 
within a domain on various quantities of interest. This concept 
has its roots in the influential paper by Eschenauer [33], and has 
later been extended and explored by numerous authors [32], 
[34]–[37], including generalization to arbitrary features [38]–
[40].  

To illustrate, let the quantity of interest be ϕ  (example: 
compliance). Suppose a tiny hole is introduced as illustrated in 
Figure 3; the finite element solution u and the quantity ϕ  will 
change. The topological sensitivity (aka topological derivative) 
is defined in 2D as: 

 
20

( )
( ) lim

r

r
p

rϕ

ϕ ϕ
π→

−
≡T �   (7) 

 
Figure 3: A topological change. 

Closed-form expression for the topological sensitivity (TS) 
can be computed by relying on the classic notions of adjoint 
(see next Section).  

3.3 Topological Level-set 

A simple approach to exploiting the TS field is to ‘kill’ 
mesh-elements with low values. However, this leads to 
instability and checker-board patterns. Alternately, the TS field 

can be used to introduce holes during the topology optimization 
process via an auxiliary level-set [41]. In PareTO, the 
topological sensitivity field is used as a level-set, as described 
next. 

For example, consider the compliance TS field illustrated in 
Figure 4. Given the TS field, and a cutting plane τ , one can 
define a domain τΩ  per: 
 { | ( ) }T Jp pτ τΩ = >  (8) 

 
Figure 4: Compliance topological sensitivity (TS) field.  

In other words, the domain τΩ  is the set of all points where 
the topological field exceeds the value of τ ; the induced 
domain τΩ  is illustrated in Figure 5. The τ  value can be 
chosen such that, say, 10% of the volume is removed. Observe 
how portions of the domain that are least critical for the 
stiffness of the structure are eliminated.  

 

 
Figure 5: Topological sensitivity field as a level-set.  

However, the computed domain may not be ‘optimal’ [31], 
i.e., it may not be the stiffest structure for the given volume 
fraction. One must now repeat the following three steps: (1) 
solve the finite element problem over τΩ (2) re-compute the 
topological sensitivity, and (3) find a new value of τ for the 
desired volume fraction. In essence, a fixed-point iteration is 
carried out[37], [42], [21], involving three quantities (see Figure 
6): (1) domain τΩ , (2) displacement fields over τΩ , and (3) 
topological sensitivity field over τΩ . 

 
Figure 6: Fixed point iteration involving three quantities 
Once convergence has been achieved (in typically 2~3 

iterations), an optimal domain at 90% volume fraction will be 
obtained. An additional 10% volume can now be removed by 
repeating this process.  

4. PROPOSED METHOD 

In this paper, we extend the PareTO method to thermo-
elastic problems with constraints. In particular, we consider two 
different formulations described in Section 4.1 and 4.2. In both 
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formulations, a compliance constraint and a stress constraint are 
imposed as follows: 
 0/ JJ J η≤  (9) 

 max 0/  in σσ σ η≤ Ω   (10) 

Equation (9) states that the ratio of compliance J  of the 
final topology to the compliance 0J  of the initial topology must 
not exceed a prescribed value of Jη  .  

Similarly, Equation (10) states that the ratio of maximum 
stress maxσ (across all elements) in the final topology to the 
initial maximum stress 0σ  (across all elements) in the initial 
topology must not exceed a prescribed value of ση  .  

In the numerical experiments, Jη  and ση range from 1.01 to 
10.0, and they control the final termination. On the other hand, 
the path taken by the optimization process is controlled by 
choosing one of the two formulations described in Section 4.1 
and 4.2. 

4.1 Compliance Minimization  

In the first formulation the objective ϕ  is the compliance, 
i.e.: 

 

0
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/
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subject to

D

J

th

t

Min J

J J

Ku f f
K t q

σ

η
σ σ η

Ω⊂
Ω

≤

≤ Ω

= +
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  (11) 

In other words, the goal is to trace the pareto-optimal 
topologies involving compliance and volume fraction until the 
stress (in any element) exceeds all allowable value, or until the 
compliance exceeds a specified value. Such topologies will be 
referred to as stiff topologies for thermo-elastic problems.  

4.2 Stress-Minimization 

In the second formulation ϕ  is the p-norm stress measure, 
i.e.: 

 

0
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 (12) 

where pσ  is the p-norm stress measure [43] of the von Mises 
stress over all elements: 

 ( )
1/ p

p
p e

e
σ σ 

=  
 
∑   (13) 

The goal is to trace the pareto-optimal topologies involving 
the global stress measure and volume fraction until the stress (in 
any element) exceeds a specified value, or until the compliance 
exceeds a specified value. Such topologies will be referred to 
here as strong topologies.  

Generating  ‘strong’ topologies is computationally more 
expensive than generating ‘stiff’ topologies [44], but arguably 
more important [45].  

4.3 Topological Sensitivity Fields 

For each of the two formulations, the topological sensitivity 
field associated with the objective ϕ   must be computed. For 
the compliance, the topological sensitivity expression is well-
known and is given by [46]: 

 
2

4 1 3
: ( ) ( )

1 1J
tr tr
ν

σ ε σ ε
ν ν

−
= −
+ −

T   (14) 

Note that the strain fields in Equation (14) is the total strain, 
while the stress field is computed via Equation (4).  

For the p-norm stress field, the topological sensitivity 
depends not only on the primary displacement field u but also 
on an adjoint field λ  [28]: 

 
2

4 1 3
( ) : ( ) ( ( )) ( ( ))

1 1p
u tr u trσ

ν
σ ε λ σ ε λ
ν ν

−
= −
+ −

T    (15) 

The adjoint field associated with the p-norm stress, by 
definition, satisfies the following equation [47]: 

 ( )u p
Kλ σ= −∇   (16) 

Using the definition in Equation (13), one can show that 
(see [28]): 
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4.4 Algorithm 

Once the topological sensitivities can be computed, the 
overall algorithm (for both formulations) is fairly simple, and 
proceeds as follows: 

1. The optimization starts at a volume fraction of 1.0. The 
‘current volume fraction’ v is set to 1.0, and ‘volume 
decrement’ v∆ , is set to 0.05. 

2. The thermal and structural finite element problems in 
Equation (1) are solved, and the total strain and stress are 
extracted at the center of each element. For the stress-
objective, an additional adjoint problem in Equation (16) is 
solved. 

3. The topological sensitivity field (Equation (14) or (15))  
is computed at the center of each element, and locally 
smoothened  with neighboring elements. 

4. Treating the topological sensitivity field as a level-set, a 
new topology with a volume fraction of ( v v−∆ ) is 
extracted. The compliance is computed over the new 
topology. If the compliance has converged, then the 
optimization moves to the next step, else it returns to step 
2. 

4 Copyright © 2014 by ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/15/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

5. The current volume fraction is set to ( v v−∆ ), and the 
optimization returns to step 2, until the final volume 
fraction is reached or until one of the constraints is 
violated. 

 
Figure 7: An overview of the algorithm. 

5. NUMERICAL EXPERIMENTS 

In this Section, we demonstrate the proposed method 
through numerical experiments. The default parameters are as 
follows: 
• The material is assumed to be steel, i.e., the elastic modulus 

is 2 11 E e Pa= , the Poisson's ratio is 0.3ν =  and the 
coefficient of thermal expansion 1.1 5eα = − . 

• The reference temperature is zero C, and a thermal load is 
applied by increasing the temperature uniformly by T∆  

• Unless otherwise noted, the p-norm value is 8. 
• Bilinear quad elements are used for finite element analysis. 

For all experiments, the constraints are: 
 0/ 3.0J J ≤   (19) 

 max 0/ 1.5σ σ ≤   (20) 

Further, the desired volume fraction is 0.1. In other words, 
the optimization terminates if the constraints are violated or if 
the final volume fraction is reached.  
5.1 Bi-clamped beam with a point load 

The first experiment is inspired by the classic bi-clamped 
structure which was previously studied by Rodrigues and 
Fernandes [12]. As illustrated in Figure 8, the structure is 
clamped on right and left edges and a mechanical point load of 

1 6F e N=  is applied at the center of the bottom edge; the 
structure is also subject to a homogeneous temperature increase 
of T∆ . The domain is meshed with 4500 elements. 

 
Figure 8: The bi-clamped structure with point-load. 

Compliance Formulation (Stiff Designs) 
The results of the compliance minimization problem for 

three different levels of temperature loadings are summarized in 
Table 1. Observe that the final volume fraction and the 
topologies are a strong function of the temperature increase. 
Compared to the default case (middle column), a lower volume 
fraction is reached with decrease in temperature (left column); 
both are compliance constrained. On the other hand, with an 
increase in temperature, the structure is stress constrained 
(stress constraints are difficult to meet exactly). 

Table 1: Final topologies and results for compliance 
minimization of the bi-clamped structure. 

T∆  -1.0 0.0 1.0 

Final 
topolog

y 

   

finalv  0.106 0.175 0.205 

finalJ  02.89J  02.98J  02.16J  

finalσ  00.99σ  01.00σ  01.37σ  

Stress Formulation (Strong Designs) 
The results of the stress minimization problem are 

summarized in Table 2. The results are similar to that of Table 1, 
except that in the last column, a lower volume fraction has been 
reached due to the compliance constraint. This highlights the 
difference between tracing compliance-minimization and 
tracing stress-minimization 
Table 2: Final topologies and results for stress minimization of 

the bi-clamped structure. 
T∆  -1.0 0.0 1.0 

Final 
topolog

y 

   

finalv  0.112 0.183 0.155 

finalJ  02.96J  02.97J  03.00J  

finalσ  01.08σ  01.00σ  01.20σ  

 
5.2 Bi-clamped beam with distributed loads 

Next we consider a similar bi-clamped beam but with 
distributed loads on the top edge as shown in Figure 9 [12]. The 
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dimension of this beam is 0.5 0.28 0.01m m m× × and the 
distributed load is 26 9 /e N m . The domain is meshed with 3200 
finite elements and subject to three different uniform 
temperature changes. 

 
Figure 9: The bi-clamped structure with a distributed load. 

Compliance Formulation (Stiff Designs) 
The results of the compliance minimization problem for 

three different levels of temperature loadings are summarized in 
Table 3. Some minor differences in topologies are noted. 

Table 3: Final topology and results for compliance 
minimization of the bi-clamped structure with distributed load. 

T∆  -20 0.0 20 

Final 
topology 

   

finalv  0.355 0.40 0.375 

finalJ  02.95J  02.88J  02.93J  

finalσ  01.47σ  01.47σ  01.45σ  

Stress Formulation (Strong Designs) 
The results of the corresponding stress minimization 

problem are summarized in Table 4. The topologies are 
consistent with those reported in [12]; relaxing the compliance 
constraint would result in a lower volume fraction. 
Table 4: Final topologies and results for stress-minimization of 

the bi-clamped structure with distributed loads. 

T∆  -20 0.0 20 

Final 
topology 

   

finalv  0.478 0.488 0.468 

finalJ  02.99J  03.00J  02.99J  

finalσ  01.43σ  01.41σ  01.42σ  

5.3 Clamped beam with tip load 

The next example is illustrated in Figure 10, where a beam 
that is 1.5m long, 1m wide and 0.01m thick, is clamped on the 
left edge and subject to a point load 5 8F e N= . The geometry is 
meshed with 3000 elements.  

 
Figure 10: The cantilever beam problem. 

Compliance Formulation (Stiff Designs) 
The results of the compliance minimization problem for 

three different levels of temperature loadings are summarized in 
Table 5. The impact of temperature on the final result is 
minimal in this case, i.e., the structure is largely dominated by 
the external force. 

Table 5: Final topologies and results for compliance 
minimization of cantilever beam. 

T∆  0 5 10 

Final 
topology 

   

finalv  0.55 0.56 0.53 

finalJ  01.55J  01.52J  01.60J  

finalσ  01.50σ  01.49σ  01.50σ  

Stress Formulation (Strong Designs) 
The results of the stress minimization problem are 

summarized in Table 6. The topologies are significantly 
different from those in Table 5. Also note that for a temperature 
increase of 5, the final stress is much closer to the constraint of 
1.5, hence a lower volume fraction has been reached; this is 
purely a numerical artifact. 
Table 6: Final topologies and results for stress minimization of 

cantilever beam. 

T∆  0 5 10 

Final 
topolog

y 

   

finalv  0.42 0.38 0.44 

finalJ  02.47  02.85J  02.55J  

finalσ  01.43σ  01.49σ  01.48σ  

5. CONCLUSIONS 

The main contribution of the paper is a new method for 
stress constrained topology optimization of thermo-elastic 
problems. Two different formulations were presented and 
compared. Both formulations exploit the concept of topological 
sensitivity; thus material parameterization is not required. 
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As the numerical experiments reveal, the impact of small 
temperature variations on the final topologies can be significant 
for certain problems, and minimal for other problems. Future 
work will focus on including other constraints including 
buckling and eigen-modes. 

PareTO can be downloaded from www.ersl.wisc.edu  
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