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ABSTRACT1 
Predicting the fracture behavior of macroscale components 

containing microscopic porosity relies on multiscale damage 

models which typically ignore the manufacturing-induced 

spatial variabilities in porosity. This simplification is made due 

to the prohibitive computational costs associated with explicitly 

modeling spatially varying microstructures in a macroscopic 

component. To address this challenge, we propose a data-driven 

framework that integrates a mechanistic reduced-order model 

(ROM) with a calibration scheme based on latent map Gaussian 

processes (LMGPs). Our ROM drastically accelerates direct 

numerical simulations (DNS) by using a stabilized damage 

algorithm and systematically reducing the degrees of freedom 

via clustering. Since clustering affects local strain fields and 

hence the fracture response, we construct a multi-fidelity LMGP 

to inversely estimate the damage parameters of an ROM as a 

function of microstructure and clustering level such that the 

ROM faithfully surrogates DNS. We demonstrate the application 

of our framework in predicting the damage behavior of a 

multiscale metallic component with spatially varying porosity.  

Keywords: multiscale damage analysis, data-driven 

calibration, reduced-order model, Gaussian processes, spatially 

varying microstructures. 

 

1. INTRODUCTION 
Predicting the effect of manufacturing-induced microscopic 

defects on the performance of macroscopic components relies on 

multiscale simulations where a microstructure or a representative 

volume element (RVE) is associated with each integration point 

(IP) of the discretized macrostructure. Traditional multiscale 

simulations use the finite element method (FEM) at both 
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macroscale and microscale where macroscopic deformation 

gradients 𝐅M and RVE effective stress 𝛔FEM
M  are exchanged 

between scales at each iteration, see Figure 1(a). A major 

challenge associated with such nested simulations is the 

computational expenses which prohibitively increase in the 

presence of nonlinear microscale deformations that involve 

damage. Reducing these costs holds the key to understanding the 

relation between microscopic defects and components’ fracture 

behavior and, in turn, guiding the “design for fracture” process. 

To this end, we propose a data-driven framework that has two 

major components: (1) a mechanistic reduced-order model 

(ROM) with an adjustable degree of fidelity, and (2) a multi-

fidelity modeling and calibration scheme based on latent map 

Gaussian processes (LMGPs). Integration of these two 

components enables us to build calibrated multi-fidelity ROMs 

that can simulate the damage behavior of multiscale materials 

with spatially varying microstructures.  

The rest of the paper is organized as follows. In Section 2, 

we review existing works on reduced-order modeling and 

discuss the research gaps that we aim to address. The overview 

and technical details of our approach are provided in Sections 3 

and 4, respectively. We evaluate the performance of our approach 

in Section 5 and conclude the paper in Section 6.  

 

2. BACKGROUND ON REDUCED-ORDER MODELING 
Mechanistic ROMs are increasingly employed to accelerate 

nonlinear material modeling by using a combination of methods 

from linear algebra and machine learning that result in reducing 

the number of unknown variables that characterize, e.g., 

microstructural strain and stress fields. Transformation field 

analysis (TFA) and its successor nonuniform transformation 
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field analysis (NTFA) are two of the earliest ROMs [1–3]. These 

two methods approximate plastic strain as either piecewise 

constants or spatially varying orthonormal eigenstrains which 

are pre-selected in an offline stage. These eigenstrains evolve in 

the online stage based on pre-defined analytical functions that 

involve thermodynamic forces and potentials.  

Clustering-based ROMs are recent techniques that 

decompose microstructure domains into a set of clusters whose 

interactions and deformations are modeled. For instance, the 

clusters in the self-consistent analysis (SCA) [4] method group 

material points with similar elastic responses and then quantifies 

cluster-to-cluster interactions by incremental Lippmann-

Schwinger equation. Finite element-based cluster analysis [5] 

approximates the microstructural effective responses by 

following the cluster minimum complementary energy principle. 

Deflated clustering analysis (DCA) [6] agglomerates close-by 

IPs in clusters and the cluster-wise quantities of interests are 

computed in a multi-grid fashion where unknown variables are 

projected back and forth between different meshes. In this work, 

we use cluster-based ROMs as they provide higher efficiency 

compared to other methods such as TFA.  

Successful application of any ROM depends on two primary 

factors: (i) the coarsening degree (e.g., the chosen number of 

clusters) which makes a tradeoff between fidelity level and 

computational costs, and (ii) the calibrated material properties.  

Both of these factors depend on the microstructure as well as the 

properties of interests. For example, accurate prediction of the 

damage behavior requires different damage parameters and the 

number of clusters for the two microstructures in Figure 1(a). In 

particular, given a desired level of accuracy with respect to high-

fidelity direct numerical simulations (DNS), the analysis of the 

more complex microstructure in Figure 1(a) requires more 

clusters (i.e., less coarsening or data reduction). 

Regarding calibration, we note that clustering material 

points diffuse stress/strain fields compared to DNS. This 

diffusion depends on the topology and unrealistically increases 

the tolerance of the material microstructure to localized 

phenomena such as damage. Hence, the material properties that 

characterize damage should be calibrated to counteract the 

superficial increase in material strength upon clustering. This 

reduction typically depends on the microstructure topology.  

In this paper, we develop a data-driven framework to 

automate the process of selecting the degree of clustering (i.e., 

fidelity level) and calibration of ROMs.  

 
3. OVERVIEW OF THE PROPOSED FRAMEWORK 

Our framework relies on two primary components for 

damage modeling in multiscale metals with porosity: a novel 

cluster-based ROM and LMGP-based calibration which are 

detailed in Sections 4.4 and 4.3, respectively.  

The ROM surrogates DNS and estimates the stress field in 

a microstructure under arbitrary displacement boundary 

conditions that may result in plasticity and damage. The fidelity 

of the ROM is determined by the user-defined parameter 𝑘 which 

indicates the number of clusters and balances costs and accuracy.  

As argued in Section 2, the material properties that must be 

used in ROM should be different than the true values that are 

used in DNS, i.e., the ROM requires calibration. This difference 

depends on both the microstructure complexity and, more 

importantly, 𝑘. Hence, we use a data-driven approach that relies 

on emulation via an LMGP to calibrate the material properties 

for ROMs. In particular, the trained LMGP enables answering 

the following question: Given 𝑘 and one microstructure, what 

damage parameters should be used in the ROM such that it 

predicts the same fracture response as DNS which uses the true 

damage parameters? As explained below, answering this 

question relies on solving an inverse optimization problem 

whose objective function relies on LMGP, see Figure 1. 

In practice, the above question is answered under two mild 

assumptions. Firstly, a small set of integer values are considered 

for 𝑘. In this work, we assume 𝑘 = 800, 1600, or 3200 but more 

values can be used within our framework. As shown in Section 

Figure 1 Proposed data-driven framework for multiscale damage modeling: LMGP creates a multi-fidelity emulator for the ROMs and 

DNS. It is then used in an inverse optimization to determine the damage parameters that must be used in ROMs such that they can approximate 

DNS as closely as possible. Upon this calibration, a multiscale simulation is run where ROMs are used at the microscale.  
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4.3, all these values are much smaller than the number of 

elements in a typical mesh and hence result in massive data 

reduction or coarsening. Secondly, the very high dimensional 

morphology of microstructures is represented with a reduced set 

of quantitative descriptors that in our case characterize the 

geometry and spatial distribution of the pores.  

We generate the samples for training the LMGP by design 

of experiments (DoE) where the inputs are microstructural 

descriptors and calibration parameters that control the damage 

behavior. For sample 𝑖, we first use a reconstruction algorithm to 

build the microstructure corresponding to the 𝑖𝑡ℎ set of 

descriptors. Then, we calculate the fracture response of the 𝑖𝑡ℎ 

microstructure (via DNS or one of the ROMs) while using the 

𝑖𝑡ℎ set of damage parameters. We choose the frequency of using 

a simulator based on its costs, i.e., we employ an ROM with 

small 𝑘 much more than DNS or an ROM with large 𝑘. 

It is noted that the optimization problem uses LMGP rather 

than a traditional Gaussian process (GP) since we view the data 

source indicator as a categorical input rather than a quantitative 

one, see Figure 1(c). This choice is justified since alternating the 

data source (e.g., DNS vs. ROM with 𝑘 = 800 vs. ROM with 

𝑘 = 3200) encodes the diffusive nature of strain-stress fields 

which cannot be readily characterized with quantitative inputs. 

Hence, our treatment of data source motivates the use of LMGP 

and greatly simplifies the metamodeling task as it eliminates the 

manual conversion of the source label to a quantitative variable.  

Once LMGP is built, we are ready to run a multiscale 

simulation where ROMs are used at the microscale instead of 

DNS, see Figure 1(d). We first assign spatially varying 

microstructures to the IPs of the macro-component. Then, based 

on the complexity of the microstructures and any prior 

knowledge (if available) on the macro-locations where excessive 

deformations can occur (e.g., near sharp corners), we choose the 

𝑘 values for ROM. Next, we use the trained LMGP to assign the 

damage parameters that must be used at 𝑖𝑡ℎ macro IP given the 

𝑘 and microstructure assigned to it. Upon this assignment, we 

conduct the multiscale simulation to find the performance of the 

macro-component while considering microstructural porosities.  

 

4. TECHNICAL DETAILS 
We first provide the details on our ROM and how it can be 

used for damage modeling in Sections 4.1 through 4.3. Then, we 

elaborate on the training process of LMGPs in Section 4.4.  

 

4.1. Stabilized micro-damage model for multiscale 
simulations 

Damage includes strain-softening which causes 

convergence issues in implicit time integration schemes. To 

address this issue, we use a stabilized damage model [7] to 

simulate microstructural effective responses during fracture 

progression.  This model decouples damage evolution from 

elasto-plasticity by introducing three reference RVEs that share 

state variables with the original damaged RVE. By tracing the 

elasto-plasticity in one of the referenced RVEs via a classic 

implicit scheme, the effective fracture stress and states can be 

mapped to the damaged RVE. Specifically, the homogenized 

damage stress in an arbitrary RVE can be written as: 
d d

M M ( )= = −
d el pl

M M M M
S E E E   (1) 

where 𝐒𝐌
𝐝  represents the effective damage stress, ℂM

d  is the 

homogenized macroscale elastic modulus, 𝐄𝐌, 𝐄𝐌
𝐞𝐥 and 𝐄𝐌

𝐩𝐥
 are 

the RVE effective strain, elastic strain, and plastic strain, 

respectively. The subscript 𝐌 indicates that the variable is a 

macroscopic quantity.  

The first reference RVE is introduced to share the same 

elasto-plastic deformation as the original RVE but without the 

damage. Its effective stress is therefore computed as: 
el el

( )= = −
1 el pl

M M M M
S E E E    (2) 

where 𝐒𝐌
1  and ℂel represent the homogenized stress and 

(undamaged) elastic modulus, respectively, and the number 1 in 

the superscript refers to the first referenced RVE. By combining 

Equations (1) and (2), we can express the referenced stress as: 
1 d el 1

M ( )
−

=
el

M M
S E     (3) 

The second reference RVE is assumed to share the same effective 

stress (𝐒𝐌
2 = 𝐒𝐌

1 ) and material property as the first RVE but 

deform elastically. Thus, its effective elastic strain (𝐄𝐌
𝐞𝐥) is: 

el 1 2 el 1 1− −
= =

el

M M M
E S S    (4) 

The effective stress and strain of the second reference RVE 

are equivalently expressed as the volume average of its 

microscale stress and strain as: 

2 21

| |
d


= 

 M m
S S     (5) 

1

| |
d


= 

 
el el

M m2
E E     (6) 

where |Ω| is the RVE volume, the subscript 𝐦 indicates that the 

variable is a microscopic quantity, and the microscale stress 𝐒𝐦
2  

is proportional to the microscale elastic strain 𝐄𝐦𝟐
𝐞𝐥  via: 

2 el
=

el

m m2
S E     (7) 

The third reference RVE has the same elastic strain as the 

second one (𝐄𝐦𝟑
el = 𝐄𝐦𝟐

el ) but its modulus is assumed to be 

identical to the original fractured RVE as: 
d

M=
3 el

m m3
S E     (8) 

d el

M m(1 D )= −     (9) 

where ℂM
d  is the damaged tangent moduli, and Dm is the damage 

parameter at a microscopic IP. The value of Dm is determined by 

the plastic strain states in the first reference RVE:  
cr

pl cr pl cr

m m1pl

m1

E
D (E ; ,E ) 1 exp( (E E ))

E
 = − − −  (10) 

where E̅m1
pl

 is the equivalent plastic strain at a microscale material 

point, 𝛼 is the damage evolutionary rate parameter, and E̅cr is the 

critical plastic strain. We note that local damage is initiated 

(Dm = 0) when effective plastic strain equals the critical strain 

(E̅m1
pl

= E̅cr ) and damage reaches total rupture (Dm = 1) when 



 

 4 © 2022 by ASME 

the effective plastic strain is much larger than the critical plastic 

strain. 

The effective damaged stress of the original RVE is assumed 

to be equal to the homogenized stress of the third reference RVE 

and is calculated as: 

1

| |
d


= = 

 
d 3 3

M M m
S S S    (11) 

For the multiscale damage analysis in Section 5.4, the 

macroscale damage parameter is computed as the ratio of the 

norms of effective stress tensors of the original and the first 

reference RVE as: 

M

:
D 1

:
= −

d 1

M M

1 1

M M

S S

S S
    (12) 

where DM is the homogenized damage parameter representing 

the fractured status of a macro-material point (and its associated 

RVE) on a macroscale component.  

 

4.2. Condensation method 
Every macroscopic IP in a multiscale simulation via the 

stabilized micro-damage model of Section 4.1 requires the 

tangent (elastic) modulus matrix (ℂel), see Equation (2). Since 

we assign spatially varying RVEs with complex morphologies to 

macro IPs, ℂel needs to be computed via variational principles 

for each RVE [8]. This numerical procedure is needed since the 

constitutive laws of the RVEs are not available in closed form. 

As variational calculations are expensive, we employ the 

condensation method [9] to compute the effective tangent moduli 

of an RVE. The condensation method starts by partitioning the 

microstructural system of equations as: 

 


=

     
     

   

pp pf p p

fp ff f

K K u f

K K u 0
   (13) 

where δ𝐮𝐩 and δ𝐮𝐟 represent the displacement variations at the 

prescribed and free nodes in an RVE, and δ𝐟𝐩 is the external force 

on the nodes with prescribed forces. 𝐊𝐩𝐩, 𝐊𝐩𝐟, 𝐊𝐟𝐩 and 𝐊𝐟𝐟 are 

the corresponding partitions of the RVE’s stiffness matrix. 

Eliminating δ𝐮𝐟 from Equation (13) leads to a reduced 

system, with a reduced stiffness 𝐊𝐫 which directly relates the 

variations of the prescribed displacements with nodal forces: 

 =
r p p

K u f     (14) 

1( )−= −
r pp pf ff fp

K K K K K    (15) 

To transform 𝐊𝐫 to the tangent moduli that relate variations 

of stress and strain, we substitute Equation (14) into the 

variational form of the macroscopic stress: 

( )
0m

0m

1
( )d


=  − 
 M m 0

S X t x x   (16) 

where 𝒙 and 𝒙𝟎 are the microscale IPs at the deformed and 

original configurations, 𝐒𝐌 is the macroscale stress at the 

macroscopic IP 𝐗, t̅m is the microscale surface traction, Γ0m is 

the RVE boundary, and ⨂ denotes the tensor product between t̅m 

and the position vector (𝒙 − 𝒙𝟎). Upon some algebraic 

modifications, the homogenized tangent (elastic) modulus 

matrix of an RVE can be obtained as: 

 
LTel

0m

1
( ) ( )= −   −


0 r 0

x x K x x   (17) 

where‘LT’ denotes the transposition between the two left indices.  

We note that even though the condensation method 

accelerates the calculation of ℂel for each RVE, parallel 

computations based on it in a multiscale analysis are memory 

demanding and still quite expensive. Hence, to avoid the online 

condensation procedure, we utilize a GP to learn the relation 

between microstructural morphology and effective elastic 

tangents for different RVEs which are pre-computed by the 

condensation method in an offline stage.  

 

4.3. Deflated clustering analysis (DCA) 
Computing the elasto-plastic response in the stabilized 

micro-damage algorithm (see Section 4.1) is needed for every 

microstructure. This computation is very expensive and so we 

use the DCA method [6] to dramatically accelerate the 

computations. The high efficiency of DCA comes from the fact 

that (1) the degrees of freedom are significantly reduced from a 

large number of finite elements to a few clusters by employing 

material clustering techniques, and (2) the algebraic system on 

the reduced system has better convergence behavior than the 

classic finite element system with much fewer close-to-zero 

eigenvalues. 

DCA uses clustering to agglomerate neighboring finite 

elements to a set of interactive irregularly shaped clusters. 

Clustering is an unsupervised machine learning technique to 

interpret and group similar data. Among many mature clustering 

algorithms [10], we adopt k-means clustering [11] in this work 

due to its simplicity.  

We start the k-means clustering by feeding the coordinates 

of element centers into a feature space where cluster seeds are 

randomly scattered and serve as initial cluster means. Then, we 

assign each element to the cluster with the closest mean. 

Meanwhile, cluster shapes are iteratively updated to minimize 

the within-cluster variance. Mathematically, the clustering can 

be stated as the following minimization problem: 

2

1

argmin
I

k

n I

I n S

 
= 

= −
S

S    (18) 

where 𝐒 represents the k-clusters with 𝐒 = {𝑆1, 𝑆2, … , 𝑆𝑘}. 𝜑𝑛 

and 𝜑̅𝐼  are the coordinates of the 𝑛𝑡ℎ element center and the mean 

of the 𝐼𝑡ℎ cluster, respectively.  

Upon clustering, we construct a reduced mesh by 

connecting cluster centroids via Delaunay triangularization 

where topological relations are preserved by checking the 

connectivity between clusters. We assume the motions of cluster 

centroids are directly related to the grouped nodes. Specifically, 

the displacement of the cluster centroid 𝐮(𝐱) is computed by 

interpolating the nodal displacements via the polynomial 

augmented radial point interpolation method [12] as: 

( ) ( ) ( )
1 1

n m

i i j j

i j

R a Z b
= =

= + u x x x    (19) 

where 𝑎𝑖 is the coefficient of the radial basis function 𝑅𝑖 at the 

𝑖𝑡ℎ FE node and 𝑏𝑗 is the coefficient of the polynomial basis 𝑍𝑗. 
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𝑛 and 𝑚 are the number of cluster nodes and the number of 

polynomial basis functions, respectively. The coefficients 𝑎𝑖 and 

𝑏𝑗 are determined by enforcing Equation (19) for all nodal 

displacements in the cluster where polynomial basis and radial 

coefficients are assumed to satisfy Equation (20) to ensure 

solution uniqueness [12]: 

( )
1

0,      1, 2,...,
n

j i

i

Z a j m
=

= = x    (20) 

We then augment the displacements of cluster centroids with 

rotational degrees of freedom to represent rigid body motions 

(three translations and three rotations in 3D) in a deflation space 

[19–21] where a reduced stiffness matrix is constructed with six 

degrees of freedom on each node. Performing nonlinear analyses 

on the reduced mesh and projecting the results back to the finite 

element nodes at the end of computations reads: 

=u W λ
j j

i i i
     (21) 

where 𝐮𝑖
𝑗
 is the displacement vector at the 𝑖𝑡ℎ node in the 𝑗𝑡ℎ 

cluster, 𝛌𝑖 is the rigid-body motion of the centroid of the 𝑗𝑡ℎ 

cluster, and 𝐖𝑖
𝑗
 is the deflation matrix for the 𝑖𝑡ℎ node grouped 

in the 𝑗𝑡ℎ cluster: 
T

, , , , ,  =   λ
j jx jy jz jx jy jz

u u u    (22) 

1 0 0 0

0 1 0 0

0 0 1 0

−

= −

−

 
 
 
 
 

W

j j

i i

j j j

i i i

j j

i i

z y

z x

y x

  (23) 

where 𝑢𝑗𝑥 and 𝜃𝑗𝑥 are the displacement and rotation of the 𝑗𝑡ℎ 

cluster along 𝑥 axis, and (𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
, 𝑧𝑖

𝑗
) are the relative 3D 

coordinates of the 𝑖𝑡ℎ node with respect to the centroid of the 𝑗𝑡ℎ 

cluster.  

We note that material points are assumed to share the same 

stress and strain values in each cluster. Hence, the local plastic 

strain fields are reproduced in a diffusive manner with lower 

strain concentrations which, in turn, delay the onset of localized 

fracture. This diffusive behavior motivates the damage 

parameter calibration using LMGP in the next section.  

 

4.4. Latent map Gaussian Process (LMGP) 
GPs are widely used in many applications for emulation 

[16–19]. The underlying idea of GP modeling is to assume that 

the data originate from a multivariate normal distribution. With 

this assumption, GP modeling involves considering a parametric 

form for the mean and covariance functions of the distribution 

and, in turn, estimating the parameters of these functions.  

Traditional GPs cannot handle categorical inputs because 

covariance functions rely on the (weighted) distance between 

inputs while categorical inputs are not typically endowed with a 

distance measure. To address this limitation of GPs, we have 

recently developed LMGPs [20] that enable GPs to handle 

categorical inputs such as the data source indicator in our case. 

As we show in Section 5.2, the learned latent space of an LMGP 

provides a nice diagnostic tool that can guide the analysis and 

design process.  

Assume the observations are produced by the single-

response function 𝜂(𝒔) which is modeled as: 

( ) ( ) ( )f   = + +s s s    (24) 

where 𝒇(𝒔) = [𝑓1(𝒔), … , 𝑓ℎ(𝒔)] is a vector of predefined 

parametric basis functions depending on the 𝑑𝑠 dimensional 

input vector 𝒔 = [𝑠1, 𝑠1, … , 𝑠𝑑𝑠
]𝑇, 𝜷 = [𝛽1, … , 𝛽ℎ]𝑇 represent the 

unknown coefficients of the basis functions, 𝜀 is white noise, and 

𝜉(𝒔) is a zero-mean GP with covariance function: 

( ) ( )( ) ( ) ( )2, ' , ' , 'cov c r  = =s s s s s s   (25) 

where 𝑐(∙,∙) is the covariance function, 𝜎2 denotes the amplitude, 

and 𝑟(∙,∙) is the correlation function. An example 𝑟(∙,∙) is the 

Gaussian kernel given by:  

( ) ( )

( ) ( ) 

2

1

, ' 10 '

' '

s

i

d
w

i

T

r exp

exp

=

 
= − − 

 

= − −

 i i

s

s s s s

s s Ω s s

  (26) 

where 𝒘 = [𝑤1, … , 𝑤𝑑𝑠
]𝑇 is the vector of roughness parameters 

and Ω𝐬 = 𝑑𝑖𝑎𝑔(10𝒘). As it can be seen, 𝑟(∙,∙) in Equation (26) 

does not accommodate categorical inputs as the distance 

between them is not defined.  

To handle categorical inputs, LMGP maps them into a 

quantitative latent space which then makes it possible to use any 

distance-based correlation function. Specifically, let us denote 

the categorical inputs via 𝒕 = [𝑡1, … , 𝑡𝑑𝑡
]𝑇 where variable 𝑡𝑖 has 

𝑚𝑖 different levels. Upon mapping, LMGP uses the Gaussian 

correlation function as: 

( ) ( ) ( ) 2
, ' ' ( ) ( )

T
r exp= − − − − −

s
u u' s s Ω s s z t z t'  (27) 

where 𝒖 = [𝒔; 𝒕] and 𝒛(𝒕) = [𝑧1(𝒕), … , 𝑧𝑑𝑧
(𝒕)]𝑇 is the learned 

𝑑𝑧 dimensional latent variable representing a particular 

combination of the categorical variables. 𝒛(𝒕) is computed by 

mapping the representation of each combination of the 

categorical variables 𝝉(𝒕) via: 

( ) ( )=z t τ t A       (28) 

where 𝐀 is the projection matrix that is estimated during training. 

Given a training dataset with 𝑛 samples, the LMGP parameters 

(i.e., 𝐀, 𝜷, 𝒘, and 𝜎2) are estimated by maximizing the log-

likelihood function: 

( )

( ) ( )
2

2

2

, , , 1

2

1
log log( )

2 2ˆ ˆ ˆ ˆ, , , arg max
1

2

T

n









−

−

=
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 (29) 

where log (∙) is the natural logarithm, |∙| denotes the determinant 

operator, 𝒚 = [𝑦(1), … , 𝑦(𝑛)]𝑇 are the 𝑛 outputs in the training 
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data, 𝑹 is the correlation matrix with entries 𝑅𝑖𝑗 = 𝑟(𝒖(𝑖), 𝒖(𝑗)), 

and 𝑭 is the prior mean basis matrix with entries 𝐹𝑖𝑗 = 𝑓𝑗(𝒖(𝑖)). 

Once the parameters are estimated, the predicted response at 

the query point 𝒖∗ is obtained via: 

 
1ˆ ˆˆ( ) ( ) ( ) ( )

   −
+= −β g βu u u V y F

T
y f   (30) 

where 𝒈(𝒖∗) is an 𝑛 × 1 vector with the 𝑖𝑡ℎ element 𝑔𝑖(𝒖∗) =
𝜎̂2𝑟(𝒖(𝑖), 𝒖∗), and 𝑽 is the covariance matrix with entries 𝑉𝑖𝑗 =

𝜎̂2𝑟(𝒖(𝑖), 𝒖(𝑗)). 

 

5. NUMERICAL RESULTS 
In this section, we apply the proposed data-driven 

framework to calibrate the ROMs in a multi-fidelity and 

multiscale model that simulates the damage behavior of a 

metallic component with spatially varying microstructures. In 

section 5.1 we train a GP that emulates the condensation method 

to accelerate the online calculation of ℂel for each macroscopic 

IP during the multiscale simulation. In Section 5.2, we 

demonstrate the application of LMGPs in building a multi-

fidelity emulator that is used in Section 5.3 to calibrate the 

damage parameters of the ROMs. Finally, we employ the 

calibrated ROMs in the multiscale simulation in Section 5.4.  

The material studied in this work is cast aluminum alloy 

A356 whose elastic properties are: 

5.70E4 MPa,       0.33E v= =    (31) 

where 𝐸 and 𝑣 are Young’s modulus and Poisson’s ratio, 

respectively. The alloy’s behavior is modeled following the J2 

plasticity theory with the piecewise linear hardening curve 

shown in Figure 2. We use an associative plastic flow rule with 

the following yield condition: 

( )
Y

        (32) 

where 𝜎, ɛ̅ and 𝜎𝑌 are Mises equivalent stress, equivalent plastic 

strain, and yield stress, respectively.  

 
Figure 2 Hardening behavior: Piecewise linear hardening of A356 

without damage. 

The softening behavior of A356 is modeled by the 

progressive damage model in Equation (10) with two damage 

parameters: critical plastic strain (E̅cr) and damage evolutionary 

rate parameter (𝛼). The following values are used in DNS while 

for ROMs they are calibrated based on the microstructural 

morphology and number of clusters: 
crE 0.03;    100= =    (33) 

The proposed method is implemented in Matlab [21] and all 

simulations are performed on a high-performance cluster 

paralleled by 40 cores (AMD EPYC processor running at 4.1 

GHz) with 120 GB RAM. 

 

5.1. GP modeling for microstructure effective tangents 
In damage analysis, the effective elastic tangent matrix plays 

a fundamental role in relating the effective reference stresses 

with elastic strains, see Equation (2). However, computing the 

effective tangents often involves intensive computational efforts 

even when condensation methods are applied.  

To improve efficiency, we develop a GP surrogate to link 

microstructural morphologies (i.e., pore distribution) with the 

effective tangent matrix. Specifically, we approximate the 

complex pores via overlapping ellipsoids whose geometry and 

spatial distribution in an RVE are characterized by four 

descriptors including porosity volume fraction 𝑉𝑓, number of 

pores 𝑁𝑝, aspect ratio between ellipsoidal axes 𝐴𝑟, and average 

nearest neighbor distance between pore centroids 𝑟̅𝑑. In addition, 

as we work with isotropic microstructural responses, the 

components of the tangent matrix are reduced to two effective 

Lame constants (μ and λ). Hence, the GP aims to build a 

predictive model between [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] and [𝜇, 𝜆]. 

To construct the GP, we first generate a training dataset with 

160 RVEs. The inputs in this dataset are generated via DoE 

where each sample specifies the value of [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] for an 

RVE. Then, we use a microstructure reconstruction algorithm 

[22] to build the RVE corresponding to each sample. Several 

reconstructed microstructures are shown in Figure 3 where the 

corresponding [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑] values are enumerated in Table 1 . 

Next, we use the condensation method to calculate the Lame 

constants for each RVE. The GP is finally trained as described in 

Section 4.4. The parameter ranges used in DoE are as follows: 
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1 5
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    (34) 

 

Figure 3 Example reconstructed microstructures: Pore descriptors 

and effective Lame constants are listed in Table 1. 
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Table 1 Pore descriptors and effective Lame constants: The numbers 

correspond to the reconstructed microstructures in Figure 3. 

RVE 𝑉𝑓 𝑁𝑝 𝐴𝑟 𝑟̅𝑑 μ (E10) λ (E10) 

(a) 6.56% 26 1.31 23.3 1.94 3.51 

(b) 9.21% 20 3.33 19.7 1.82 3.05 

(c) 2.06% 13 1.14 28.1 2.08 3.96 

(d) 3.29% 29 2.37 20.5 2.03 3.78 

(e) 9.97% 48 1.16 20.4 1.85 3.23 

(f) 7.80% 20 2.15 25.9 1.89 3.31 

(g) 1.92% 22 4.95 22.4 2.08 3.92 

(h) 3.12% 60 2.11 16.9 2.04 3.81 

(i) 2.61% 31 1.09 21.6 2.07 3.91 

(j) 9.70% 51 2.47 18.2 1.82 3.09 

(k) 1.15% 36 1.84 21.1 2.11 4.03 

(l) 4.48% 77 1.43 14.5 2.01 4.03 

 

To test our GP’s accuracy, we split the dataset and use 80% 

for training and 20% for validation. Comparisons of the 

predictions against the validation samples are shown in Figure 4.   

 
Figure 4 Emulation accuracy: Comparison of actual microstructural 

effective Lame constants against GP predictions on unseen test samples. 

To assess the convergence and whether sufficient training 

data are used, we then split the dataset to 100 samples for training 

and 60 samples for testing. We sequentially increase the size of 

the training data from 10 to 100 and evaluate the accuracy of the 

corresponding GPs on 60 test samples (all GPs are evaluated on 

the same set of test samples). The prediction errors are computed 

by Equation (35) and shown in Figure 5: 

1

ˆ1 v

v

N
i i

i i

E
N =

−
= y

y y

y
    (35) 

where 𝑁𝑣 is the number of validation samples, 𝐸𝒚 is the relative 

prediction error of responses 𝒚 = [𝝁, 𝛌], 𝒚̂𝑖 and 𝒚̅𝑖 are the 

predicted effective constants for the 𝑖𝑡ℎ microstructure.  

Through investigating Figure 5, we note that the errors 

monotonically decrease and that with almost 100 samples 

prediction error has converged. Following these observations, 

we fit a GP to the entire data and subsequently use it in our 

microscale damage analyses. 

 

 
Figure 5 Error convergence: GP estimation errors on predicted Lame 

constants with respect to the number of training points. 

 

5.2. LMGP modeling of damage model parameters 
To showcase the importance of using LMGP for multi-

fidelity modeling and calibration, consider the microstructure in 

Figure 6(a) whose damage parameters are defined in Equation 

(33). We deform this RVE to the deformation gradient in 

Equation (36) and obtain its response via DNS with 68675 

elements. As shown in Figure 6(b), significant plastic strain 

concentrations appear in the vicinity of the pores. We then model 

the same microstructure via an ROM with 3200 clusters and with 

the same damage parameters as DNS. The results are shown in 

Figure 6(c) and clearly demonstrate the diffusive nature of 

clustering. Hence, when using the ROM the magnitude of local 

plastic strain is lower than DNS which results in delayed fracture 

initiation, larger material toughness, and higher ultimate tensile 

strength (UTS), see Figure 7(a).  

ROM’s accuracy can be improved by calibrating its damage 

parameters. We illustrate the effects of calibration on local strain 

concentrations and effective responses in Figure 6(d) and Figure 

7(b), respectively. Compared to the ROM with the original 

damage parameters, the calibrated ROM provides more accurate 

estimations on both material toughness and ultimate tensile 

strength (UTS), see the enumerated errors and their norms in 

Table 2. However, manually calibrating microstructures with 

various morphologies and different fidelity levels (k) is time-

consuming and suboptimal. Hence, we develop an LMGP-based 

calibration procedure to automatically find the optimal values of 

damage parameters. 
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Figure 6 Equivalent plastic strain fields: (a) the porosity morphology 

of a microstructure with 25 pores, (b) plastic strain simulated via DNS, 

(c) plastic strain approximated by ROM (k=3200) without calibration, 

and (d) plastic strain approximated by ROM (k=3200) with calibration. 
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Figure 7 Importance of calibration: (a) effective stress-strain curves 

without damage parameters calibration, and (b) the effective response 

with calibration. 

 

 

Table 2 ROM prediction errors: the errors in UTS and toughness are 

obtained by comparing the predictions to DNS. 

ROM 

clusters 
(k) 

Error w/o LMGP 

calibration (%) 

Error with LMGP  

calibration (%) 

UTS Toughness Error 
norm 

UTS Toughness Error 
norm 

800 11.5 10.6 15.61 3.74 3.64 5.22 

1600 5.5 5.8 7.99 1.28 1.96 2.34 

3200 3.2 3.7 4.86 1.55 1.73 2.33 

 

To use LMGP for calibrating damage parameters, we 

generate a dataset that consists of six inputs 𝒙 = [𝑥1, … , 𝑥6]𝑇 and 

two outputs 𝒚 = [𝑦1, 𝑦2]𝑇, as shown in Table 3. The first four 

inputs represent the pore descriptors (i.e., [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , 𝑟̅𝑑]) and the 

last two inputs represent damage parameters (i.e., evolutionary 

rate parameter 𝛼 and critical effective plastic strain E̅cr). The 

outputs are the UTS and material toughness.  

We append each sample with a categorical variable 

encoding data source, denoted by 𝑡1 = {1,2,3,4}  where label 4 

corresponds to DNS while labels 3, 2, and 1 correspond to ROM 

with 𝑘 = 3200, 𝑘 = 1600, and 𝑘 = 800 respectively. To enable 

LMGP to simultaneously surrogate multiple responses, we also 

appended the samples with a second categorical variable 

encoding the type of outputs by 𝑡2 = {1, 2} where label 1 

corresponds to UTS and label 2 indicates material toughness. 

The resulting training dataset is shown in Table 3. 

We note that our dataset is highly unbalanced since we have 

fewer samples from high-fidelity sources which require intensive 

computational efforts. In particular, we have a total of 300 data 

points where only 𝑛ℎ = 15 samples are obtained via DNS while 

𝑛𝑙1 = 45, 𝑛𝑙2 = 90, and 𝑛𝑙3 = 150 samples are built via the 

ROM with 3200, 1600, and 800 clusters, respectively.  

Once LMGP is trained, we can visualize the learned latent 

space where each combination of the two categorical variables is 

mapped to a point. The learned positions are demonstrated in 

Figure 8 and are consistent with our expectations. Specifically, 

the eight latent positions correspond to all possible combinations 

of the two categorical variables. The first digit of the label 

encodes the data source while the second label encodes the 

damage response. The latent points with the same responses are 

grouped by two vertical lines: while the points on the left 

correspond to the UTS, the points on the right are for the 

toughness. Therefore, we note that the four fidelity levels are 

described by vertical coordinates while the two responses are 

represented by horizontal coordinates.  

From Figure 8, we also observe that the relative distances 

are directly related to the data sources’ fidelity levels. For 

instance, the positions of 𝑘 = 3200 (labels 31 and 32) are further 

from 𝑘 = 800 (labels 11 and 12) than 𝑘 = 1600 (labels 21 and 

22), but the closet to DNS (labels 41 and 42). In addition, we 

observe that the scale of the horizontal axis is one order of 

magnitude larger than the vertical axis, indicating a higher 

correlation between fidelity levels than the types of responses.  

The observation that the distance between DNS and 𝑘 =
800 for both responses is around 0.02, suggests a large 

correlation (exp{−0.022} = 0.9996) between the two data 

sources, see Equation (27). LMGP can therefore use any useful 

knowledge from low-fidelity data to improve its accuracy in 
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emulating the high-fidelity source (i.e., DNS). Additionally, we 

notice that the distance between two responses is about 0.6, 

which results in the correlation value of exp{−0.62} = 0.6977. 

In other words, the two responses are positively correlated which 

coincides with our expectation, since the delayed fracture 

prediction of ROM not only increases UTS but also enlarges 

material toughness.  

 
Table 3 LMGP’s training dataset: There are four microstructure 

descriptors and two damage parameters (𝑥5 and 𝑥6). The two categorical 

inputs distinguish data source and response type. The data are color-

coded based on 𝑡2 (green is UTS and blue toughness). 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒕𝟏 𝒕𝟐 𝒚 

0.021 13 1.14 28.1 54.7 0.015 4 1 1.12·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.066 26 1.31 23.3 71.2 0.017 4 1 1.15·108 

0.098 87 1.89 12.4 75.6 0.020 3 1 1.13·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.045 77 1.43 14.5 80.7 0.023 3 1 1.26·108 

0.030 70 3.93 12.6 73.4 0.066 2 1 1.21·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.026 31 1.10 21.6 98.3 0.029 2 1 1.33·108 

0.078 34 2.77 17.4 21.3 0.012 1 1 1.08·108 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.016 88 3.13 14.4 61.7 0.027 1 1 1.36·108 

0.021 13 1.14 28.1 54.7 0.015 4 2 3.14·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.067 26 1.31 23.3 71.2 0.017 4 2 3.00·106 

0.098 87 1.89 12.4 75.6 0.020 3 2 3.26·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.045 77 1.43 14.5 80.7 0.023 3 2 3.93·106 

0.030 70 3.93 12.6 73.4 0.066 2 2 3.07·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.026 31 1.10 21.6 98.3 0.029 2 2 4.72·106 

0.078 34 2.77 17.4 21.3 0.012 1 2 3.17·106 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

0.016 88 3.13 14.4 61.7 0.027 1 2 5.05·106 

 

To assess LMGP’s accuracy, we use 300 samples for 

training and 100 samples (𝑛ℎ = 5, 𝑛𝑙1 = 15, 𝑛𝑙2 = 30, 𝑛𝑙3 =
50) for validation. LMGP’s prediction accuracy is quantified by 

mean squared error (MSE) in Table 4 where we observe that the 

surrogate's prediction error decreases as we use higher fidelity 

level sources. We compare LMGP’s predictions with validation 

values in Figure 9 where we note the predictions for both UTS 

and toughness are quite accurate. Based on this figure, the 

predictions of UTS present larger errors than toughness. One 

plausible reason is that UTS, a point measurement of the 

maximum stress that an RVE can tolerate, is sensitive to some 

factors that are not captured in this model, e.g., crack propagation 

direction. However, RVE toughness which is a measurement of 

the amount of released energy during damage evolution can be 

characterized by our model’s variables sufficiently well.  

 
Figure 8 Learnt latent space of LMGP: Each latent position encodes 

simulation fidelity level and damage response. 

Table 4 Error analysis: LMGP’s prediction MSE for the two damage 

responses and four data sources. 

 

Source 

MSE 

𝑦1 (UTS) 𝑦2 (fracture energy) 

DNS 6.3966·1011 7.4737·108 

ROM with k = 3200 7.1468·1011 4.3607·108 

ROM with k = 1600 3.2451·1012 3.5422·109 

ROM with k = 800 7.2695·1012 9.9943·109 

 

 

 
Figure 9 Performance on unseen test data: Comparison of the true 

responses against the LMGP’s predictions for UTS and toughness. 
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5.3. Calibration of damage parameters 
To calibrate the damage parameters for each ROM, we need 

to solve an inverse optimization problem whose objective 

function is evaluated via LMGP. We estimate the calibration 

parameters for the 𝑖𝑡ℎ microstructure and the 𝑗𝑡ℎ source-level 

such that the estimated damage responses from ROM match the 

ones from DNS that uses 𝛼𝐷𝑁𝑆 = 100 and 𝐸̅𝐷𝑁𝑆
𝑐𝑟 = 0.03. The 

optimization problem is hence formulated as: 

( ) ( )
2

,

ˆ, arg min p py x y x


 
  

= −
cr

cr i i
jDNS

E

E  (37) 

where 𝒚𝒑(·) are the predicted damage responses by LMGP and 

𝒙𝐷𝑁𝑆
𝑖 = [𝑉𝑓

𝑖 , 𝑁𝑝
𝑖 , 𝐴𝑟

𝑖 , 𝑟̅𝑑
𝑖 , 𝛼𝐷𝑁𝑆 , 𝐸̅𝐷𝑁𝑆

𝑐𝑟 , 𝑡1 = 4, 𝒕2] is the input vector 

of the 𝑖𝑡ℎ microstructure for predicting the responses of DNS. 

Analogously, 𝒙𝑗
𝑖 = [𝑉𝑓

𝑖, 𝑁𝑝
𝑖 , 𝐴𝑟

𝑖 , 𝑟̅𝑑
𝑖 , 𝛼, 𝐸̅𝑐𝑟 , 𝑡1 = 𝑗, 𝒕2] is the input 

vector of the 𝑖𝑡ℎ microstructure for predicting the damage 

responses for ROM at the 𝑗𝑡ℎ level (note that we pass 𝒕2 as a 

vector to get both responses). 

We use a gradient-based optimization method to solve 

Equation (37). In Figure 10, we show the calibrated damage 

parameters for 20 randomly selected microstructures. 

 

 
Figure 10 Calibrated ROM damage parameters: (a) evolutionary 

rate parameter, and (b) the critical effective plastic strain. 

We observe the same trend across all samples: (i) the ROM’s 

calibrated damage parameters are smaller than those of DNS, and 

(ii) the values of calibrated damage parameters get closer to DNS 

as we increase the number of clusters (k). To understand the 

underlying reason, we refer to Figure 7(a): as 𝑘 decreases, the 

localized plastic strain is more diffusive than its DNS 

counterpart, resulting in a delay of damage initiation in the 

stress-strain curve. Therefore, to counteract this diffusive 

behavior, the calibrated damage parameters reduce the strength 

of the materials such that the ROM can faithfully approximate 

DNS. 

 

5.4. Concurrent multiscale damage analyses 
We apply the proposed multiscale damage model to a 3D L-

shape bracket in this section to simulate the impact of micro-

porosity on macroscopic fracture behavior. The dimensions of 

the L-bracket are shown in Figure 11 which is fixed on the top 

surface and is subject to a Dirichlet boundary condition on the 

right surface (𝑑 = 20mm). The bracket model is discretized with 

2113 linear tetrahedron elements with reduced integrations.  

 
Figure 11 multiscale model: The dimensions and boundary conditions 

of the 3D L-shape bracket with a thickness of 5 mm. 

For multiscale analysis, we divide the bracket into two 

subdomains: a monoscale region and a multiscale region with 

spatially varying porosity distribution. This choice is motivated 

by the observation that under large deformations the fracture 

happens in the multiscale domain (where high accuracy and 

microstructural effects are needed) and hence the other regions 

of the bracket can be modeled as a single scale. 

For each of the 147 IPs in the multiscale region, we assume 

it is randomly associated with a microstructure from the database 

generated in 5.2. The effective damage behavior in each 

microstructure are simulated by ROM with three options for the 

number of clusters: 800, 1600, or 3200. For each ROM with a 

selected cluster number, its optimal damage parameters are 

readily available from the LMGP-based calibration process 

described in Section 5.3. 

In our multiscale simulations, we ensure the released 

fracture energy is consistent between the scales by equating 

microstructure volumes to macroscopic mesh sizes. 

Additionally, we apply a nonlocal damage function with a 

feature size of 15mm on the bracket model to prevent 

pathological mesh dependency and convergence difficulty.  

We demonstrate the simulated fracture pattern and load-

displacement response (with and without multiscale treatment) 

in Figure 12. In Figure 12(a), fractures are represented by the 

effective damage values DM from Equation (12) DM = 1 

represents complete rupture. From Figure 12(b), we observe that 
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porous microstructures significantly deteriorate the bracket’s 

load-carrying capacity which drops by 10.22% from 70.86N to 

63.62N, and the whole structure breaks at a much lower 

displacement boundary condition. Therefore, compared to the 

single-scale model that only considers dense materials and 

neglects pores, the multiscale model provides us with a more 

realistic prediction considering fractures across scales. 

 

 

Figure 12 Results of the multiscale damage analysis: (a) top view of 

the fracture patterns on the L-bracket model, and (b) the force-

displacement responses. 
 

6. CONCLUSION 
We propose a multi-fidelity reduced-order model for 

multiscale damage analysis that considers manufacturing-

induced spatially-varying porosity. Our model is not only 

significantly faster than classic multiscale simulations but also 

has lower memory requirements. Our approach relies on a 

mechanics-based ROM that accelerates the microscale elasto-

plastic deformations by clustering the degrees of freedom. Since 

this clustering increases the microstructure tolerance to damage 

initiation and evolution, we develop a calibration scheme to 

estimate the damage parameters that must be used in ROM such 

that it can faithfully approximate high-fidelity simulations.  

We use LMGPs to build a multi-fidelity emulator and then 

use it in our calibration scheme. In addition to providing high 

accuracy and versatility, we show that the learned latent space of 

LMGP provides insights into the problem. In particular, we 

demonstrate the relative accuracy between the four simulators 

that model microstructural damage behavior.  

Upon calibration of our ROMs, we use them in a multiscale 

simulation to study the effect of porosity on the macroscopic 

response of an L-bracket. Our results indicate that porosity 

noticeably decreases the strength of the material and hence must 

be considered in “design for fracture”. 
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