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Abstract
Computationalmodeling of heterogeneousmaterials is increasingly relying onmultiscale simulationswhich typically leverage
the homogenization theory for scale coupling. Such simulations are prohibitively expensive and memory-intensive especially
when modeling damage and fracture in large 3D components such as cast metallic alloys. To address these challenges, we
develop a physics-constrained deep learning model that surrogates the microscale simulations. We build this model within a
mechanistic data-driven framework such that it accurately predicts the effective microstructural responses under irreversible
elasto-plastic hardening and softening deformations. To achieve high accuracy while reducing the reliance on labeled data,
we design the architecture of our deep learning model based on damage mechanics and introduce a new loss component that
increases the thermodynamical consistency of the model. We use mechanistic reduced-order models to generate the training
data of the deep learning model and demonstrate that, in addition to achieving high accuracy on unseen deformation paths that
include severe softening, our model can be embedded in 3D multiscale simulations with fracture. With this embedding, we
also demonstrate that state-of-the-art techniques such as teacher forcing result in deep learning models that cause divergence
in multiscale simulations. Our numerical experiments indicate that our model is more accurate than pure data-driven models
and is much more efficient than mechanistic reduced-order models.

Keywords Multiscale damage modeling · Recurrent neural networks · Data-driven surrogate · Path dependency · Physics
constraints

1 Introduction

Heterogeneous materials are increasingly used inmany engi-
neering applications. Analyzing the behavior of such mate-
rials often relies on multiscale simulations such as the FE2

method [1] which is a popular homogenization-based con-
current multiscale model that uses the finite element method
(FEM) at two spatial scales. Despite the recent advancements
in software/hardware and mechanics theory [2], the simula-
tion of hierarchical materials via FE2 is still prohibitively
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costly. Consider the multiscale model in Fig. 1a where each
integration point (IP) of the macroscale component repre-
sents a microstructure with complex local morphologies. In
this model, the two-scale spatial discretization requires large
memory storage and also results in long runtimes since the
solver repeatedly iterates between the scales. These chal-
lenges are exacerbated in the presence of microstructural
deformations that are path-dependent and involve damage.
That is, the evaluation of the microstructural responses is the
primary computational bottleneck. Our goal in this paper is
to address such bottlenecks by developing a deep learning
(DL) model that surrogates the microstructural analyses in
3Dmultiscale simulations that involve plasticity and fracture.

The computational costs of microstructure analyses is
especially high in the presence of fracture whose modeling is
one of the most important sub-branches of solid mechanics.
Fracture mechanics aims to quantitatively study the initia-
tion, accumulation, and propagation of damage in materials
and its numerical simulation is generally carried out by two
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Fig. 1 Multiscale simulations:a Each integration point of the
macroscale component represents a microstructure whose effective
response is needed as the solver iterates between the two scales. We
build a physics-constrained data-driven material model to surrogate the
expensive microscale analyses amid online multiscale simulations. Our

data-driven framework has three major offline components: b defor-
mation representation, c response database generation via mechanistic
reduced-order models (ROMs), and d physics-constrained deep learn-
ing

approaches [3]: a discrete approach and a continuous one.
The former approach explicitly models discontinuous dis-
placement fields across fracture interfaces. Some of the early
discrete models include linear elastic fracture mechanics
(LEFM) [4] and cohesive zone models (CZM) [5] which
require additional criteria to formulate the crack initiation,
growth, propagation, and branching. To address the strong
discontinuity-inducednumerical difficulty in a standardFEM
with continuous displacement fields, recent works consider
LEFMwith nodal duplication and remeshing techniques [6],
CZM with zero-thickness cohesive surfaces [7], enriched
FEM with elemental and nodal enrichment [8], and the
extended FEM (XFEM) [9, 10] where the approximation
functions are enriched and additional degrees of freedom are
provided to represent the discontinuity without mesh refine-
ment.

The continuous approach models fracture as a stress/
modulus degradation process via strain softening on a con-
tinuous displacement field. The twomost popular continuous
models are the smeared crack model [11, 12] (which smears
the displacement discontinuity over a fracture zone of finite
width) and the continuumdamagemechanics [13, 14] (which
considers the influence of micro defects on damage evo-

lution based on phenomenological damage parameters).
Continuum damage mechanics suffers from severe mesh
dependency due to the lack of objectivity of softening consti-
tutive formulation which causes erroneous imaginary wave
speed amid damage propagation. Remedies include viscous
regularization [15], cosseratmicropolar theory [16], nonlocal
continuum theory [17, 18], and gradient-enhanced damage
models [19, 20].

As alternatives to expensive methods such as the FE2 and
direct numerical simulations (DNS), mechanistic reduced-
order models (ROMs) are developed which can significantly
accelerate computational plasticity and damage mechan-
ics. The main idea behind ROMs is to reduce the number
of unknown variables (e.g., stresses, strains, or internal
variables such as the damage parameters) while striking a
balance between accuracy and efficiency. For example, the
transformed field analysis method [21] and its non-uniform
variant [22] employ proper orthogonal decomposition to
reduce material state variables by expressing arbitrary strain
fields as a subspace representation of pre-computed eigen-
strains. Clustering-based ROMs reduce unknown variables
by agglomerating a large number of IPs into a few clusters.
For instance, the self-consistent clustering [23] and its variant
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the virtual clustering analysis [24] methods assume IPs with
similar elastic responses behave similarly during inelastic
deformations and solve incremental Lippmann-Schwinger
equations to approximate the evolution of cluster-wise mate-
rial responses. Deflated clustering analysis (DCA) [25] uti-
lizes clusters to decompose both macroscale and microscale
domains where macro analysis is faithfully accelerated in a
deflation space while the effective microstructural responses
are approximated in a coarse-grainedmanner where close-by
IPs are presumed to share the same behaviors. DCA’s robust-
ness and efficiency are further improved in [26] where both
spatial and temporal dimensions are adaptively reduced for
elasto-plastic deformationswith softening.WhileROMsdra-
matically accelerate multiscale simulations, their runtimes
are still quite high (especially in the presence of softening).
Additionally, ROMs lack solution transferability in that the
expensive data of one instance of themodel is not reused (e.g.,
the full strain–stress history obtained for a microstructure
corresponding to a macroscopic IP is not reused in another
multiscale simulation).

Machine learning (ML) provides a feasible avenue for
building transferable and extremely fast material models.
Among the various ML techniques such as Gaussian pro-
cesses (GPs) [27–30] and polynomial chaos expansion
[31], neural networks (NNs) are increasingly employed in
computational solid mechanics to build data-driven mate-
rial models [32, 33]. For instance, NNs are used to learn
visco-plasticity [34], cyclic plasticity [35], interface mecha-
nism [36], and anisotropic electrical behaviors [37]. More
recently, Mianroodi et al. [38] build an NN to calculate
local stress distributions in non-homogeneous microstruc-
tures with elasto-plastic behaviors. Haghighat et al. [39]
incorporate the momentum balance and constitutive rela-
tions into a feed-forward NN and demonstrate the improved
extrapolation capability for single-scale elasto-plastic simu-
lations. Peivaste et al. [40] develop a convolutional NN to
surrogate costly phase-field simulations to learn microstruc-
tural grain evolution.

Data-driven material models are increasingly built via
recurrent neural networks (RNNs) to learn path-dependent
constitutive laws that govern elasto-plastic deformations. For
example, Mozaffar et al. [41] successfully use an RNN to
learn plasticity with distortional hardening on 2D fiber com-
posite microstructures. Wang et al. [42] develop an RNN to
link information from different scales via recursive homoge-
nization to capture themultiscale hydro-mechanical coupling
effects of heterogeneous media with various pore sizes. In
these works, various methods are proposed for data gener-
ation. For instance, Wu et al. [43] design a random walk
algorithm to generate a database of effective elasto-plastic
hardening behaviors under cyclic and non-proportional load-
ing paths. An on-demand sampling strategy is adopted by
Ghavamian et al. [44] that reduces sampling space by run-

ningpriormacromodels to collect the strain–stress sequences
for the subsequent RNN’s learning process. This strategy
reduces sampling efforts and improves prediction accuracy
but reduces the generalization power since the trained model
can be only applied to the macro component that is used to
collect the training sequences. In a recent work [45], Logarzo
et al. use an RNN to learn the hardening behavior of a 2D
composite microstructure under a wide range of deformation
histories that are sampled from the space of principal strains.

All aforementionedRNN surrogates are black-box or pure
data-driven models whose accuracy relies on large train-
ing datasets. Building such datasets is very challenging for
3D microstructural analyses that involve softening. Since
infusing physical laws into the training process can improve
the reliance on data and energy consistency, we rigorously
explore this direction to derive the physical constraints that
must be met when surrogating elasto-plastic deformations
with softening. That is, our main contribution is to develop a
physics-constrained RNN that surrogates the micro analyses
amid online multiscale simulations that involve softening.
Compared to the reviewed ROMs and pure data-driven mod-
els, our surrogate is computationally efficient, memory-light,
physics consistent, and transferable.

The rest of the paper is organized as follows. In Sect. 2,
we briefly review the homogenization-based concurrent
multiscale modeling. In Sect. 3, we propose our physics-
constrained data-driven model to surrogate effective elasto-
plastic microstructural responses that may involve damage.
Specifically, we derive two constraints based on the contin-
uum damage mechanics and integrate them in our surrogate
to reduce data reliance and improve prediction accuracy.
In Sect. 4, we illustrate the efficiency and accuracy of
our data-driven model by (1) evaluating its predictions of
microstructural effective responses subject to random defor-
mation paths, and (2) embedding it in a number of multiscale
structures subject to complex cyclic loading conditions with
hardening and softeningmaterial behaviors.We conclude our
paper with some notes on the contributions, limitations, and
future research directions in Sect. 5.

2 Review of Homogenization-Based
Multiscale Modeling

Our multiscale damage analysis is based on the first-order
homogenization model which we review in this section.
We also briefly review the continuum damage modeling in
Appendix A, and in Appendix B we discuss a constitutive
hybrid integration scheme that we previously developed to
address softening-induced numerical instability.

The first-order computational homogenization assumes
scale separation between a macroscale component and its
microscopic features. In solvingmultiscale systems, the solu-
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tions at the macroscale and microscale are coupled via the
Hill-Mandel condition [46]. This condition equates the den-
sity of virtual internal work of a macroscale IP to the volume
average of the virtual work in the associated microstructure
subject to kinematically admissible displacement fields:

SM : δEM = 1

|�0m |
∫

�0m

Sm : δEm d� (1)

where SM , δEM , Sm and δEm represent the macroscopic
stress, virtual macroscopic strain, microscopic stress, and
virtual microscopic strain, respectively. The subscripts M
and m indicate the macroscale and microscale, respectively.
The : operator represents the double dot product contracting
a pair of repeated indices. In addition, �0m and |�0m | indi-
cate the reference microstructural domain and its volume,
respectively. Following the virtual energy condition in Equa-
tion (1), the macroscopic effective stress and virtual strain
can be expressed as the volume average of their micro coun-
terparts as:

SM= 1

|�0m |
∫

�0m

Sm d�; δEM= 1

|�0m |
∫

�0m

δEm d�

(2)

The stress and strain at both themacroscale andmicroscale
need to satisfy equilibrium equations at the corresponding
length scale. For instance, under the infinitesimal defor-
mation assumption, the macro-solutions at the arbitrary
macroscopic IP P can be computed by solving the following
boundary value problem (BVP):

∇0 · SM (P) + bM = 0 ∀P ∈ �0M (3a)

uM (P) = ūM ∀P ∈ �D
0M (3b)

SM (P) · nM = t̄M ∀P ∈ �N
0M (3c)

where uM is the unknown macroscopic displacement in
�0M and ūM is the prescribed displacement on the Dirich-
let boundary �D

0M over the undeformed macroscopic domain
�0M with an outward unit vector nM . Also, ∇0 indicates the
gradient operator with respect to the original configuration.
bM and t̄M represent the body force and prescribed surface
traction on the Neumann boundary �N

0M , respectively.
In a similar manner, the strong form of the microscale

equilibrium equations can be written as a BVP for the
microstructure or representative volume element (RVE) com-
posed of micro IPs p as:

∇0 · Sm( p) = 0 ∀ p ∈ �0m (4a)

Sm( p) · nm = t̄m ∀ p ∈ �0m (4b)

where t̄m indicates the surface traction per unit area over
the reference microstructural boundary �0m with an outward
unit normal vector nm .

3 Proposed Physics-Constrained
Data-Driven Surrogate

To reduce the computational costs of multiscale simula-
tions that involve hardening and softening, we follow the
data-driven framework that is schematically illustrated in
Fig. 1b–d. Our framework uses the following three modules
to build a physics-informed material model that surrogates
the nested microstructural analyses. The first two modules
create the training dataset for the material model and the last
module builds an RNN using the generated data and domain
knowledge.

• Module 1: Exploration of the deformation space.
Deformation paths are extremely high dimensional as
they have a sequential nature. To efficiently explore such
a high-dimensional space, we utilize random processes
and design of experiments (DoE). This exploration is an
extremely important step because in a multiscale simu-
lation each macro IP (and hence its corresponding RVE)
undergoes a unique deformation path that depends on the
IP’s location, the material properties, the applied macro
boundary and initial conditions, and the geometry of the
macro component.

• Module 2: Response collection. The first major com-
putational bottleneck of our framework is obtaining the
microstructural responses to the deformation paths gen-
erated in Module 1. These high costs are primarily
associated with simulating softening and we address
them by using ROMs which leverage hybrid time inte-
gration to avoid softening-induced solver divergence.

• Module 3: Physics-informed surrogate modeling. Fit-
ting an accurate surrogate to the generated training data
is a challenging and time-consuming process since the
generalization power1 of the RNN strongly depends on
its architecture, training data size, and the training mech-
anism.We use domain knowledge to dramatically reduce
the sensitivity of the RNN to these factors such that it can
be used as a transferable constitutive law in a wide range
of multiscale simulations.

We describe these three modules in more detail below.
In Sect. 3.1 we elaborate on the data generation process
which builds a set of independent and systematically sam-
pled microstructural deformation-response sequences. This

1 The accuracy of the surrogate in predicting the microstructural
response given deformation paths that are not seen in training.
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dataset is then used in Sect. 3.2 to train an RNN that serves as
the data-driven material model at the microscale. To improve
thismodel’s accuracy onunseen deformation paths,we incor-
porate two physics constraints in Sect. 3.3. In Sect. 3.4, we
show the integration procedure of our surrogate in multiscale
solvers.

3.1 Design of Experiments

While using domain knowledge reduces the reliance on train-
ing data, building a transferable2 RNN is still a data intensive
and computationally expensive task since thousands of costly
samples are needed. Hence, it is important to ensure that the
training data provides as much information as possible by
maximally exploring the deformation space. Below, we first
define this space and then describe our sampling mechanism.

In theDoE,weassumeevery strain path starts froma relax-
ing state (with zero initial strains and no residual stresses) and
evolves to a final state by nload load steps. Additionally, we
presume that (1) the maximum strain value in any direction
and at any load step is smaller than the user-defined thresh-
old ζ1, and (2) our material’s bulk modulus is fairly large
such that the deformation-induced material volume change
is within the user-defined limit ζ2. We use these two practi-
cal constraints to reduce the sampling space and we express
them as:

|Ei
n| ≤ ζ1; |Evol

n | ≤ ζ2 (5)

where Ei
n represents the i th component of the strain vector

at load step n ∈ {1, 2, . . . , nload}, i ∈ {1, 2, 3, 4, 5, 6} indi-
cates the six components of 3D strains in which i = {1, 2, 3}
designate normal strains and i = {4, 5, 6} represent shear
strain components. We note that Evol

n = E1
n +E2

n +E3
n is the

volumetric strain standing for the material volume change
after deformation.

Without loss of generality, we require all deformation
paths to have nload load steps. We characterize each dimen-
sion of a load path3 with nc evenly spaced control points
whose strain values are sampled via a space-filling algorithm
such as the Sobol sequence. To obtain the strain values at all
nload load steps, we use a one-dimensional zero-mean GP
to interpolate the values assigned to the control points. The
correlation function of this GP is:

r(n, n′) = exp(−w(n − n′)2) (6)

where n and n′ are two load steps, w is the scale parameter
that controls the roughness of the interpolated curve, and the

2 By Transferable we mean an RNN that can be used as the constitutive
law at all macro IPs in a wide range of multi-scale simulations.
3 In 3D, a load path consists of 6 strain sequences where each sequence
is of length nload .

exponent 2 ensures that the generated path is differentiable.
In our dataset, we change the value of w across the DoE
samples to increase the variability in the generated paths.
That is, we use a single Sobol sequence to generate both w

and the values of all strain components at all control points.
To ensure the values of all six strain components at the

control points satisfy the two constraints in Eq.5, we gener-
ate a large DoE via the Sobol sequence (which is extremely
fast) and then select n p valid points from it. Specifically, we
choose the independent variableswhose bounds are known as
theDoE dimensions, i.e., Evol

c and Ei
c with i ∈ {1, 2, 4, 5, 6}.

Then, we find the third normal strain for the control point c
via E3

c = Evol
c − E1

c − E2
c .

We create a total of n p deformation paths where each
one represents the temporal evolution of the six indepen-
dent strain components. We plot ten example strain paths in
Fig. 2 which demonstrates that the random shear strains span
the entire hypercube-shaped deformation space constrained
by ζ1 while the normal strain components are additionally
confined between the two hyper-planes that represent the vol-
umetric strain constraint defined by ζ2. We also plot the 2D
projections of the random strain sequences in Fig. 2 to show
that the normal and shear components start from the relaxing
state without any strain values. In addition, we observe that
the highly complex deformation histories consist of multiple
loading-unloading-reloading cycles.

After we generate the random strain paths, we use ROMs
to compute the microstructural effective responses for each
strain sequence. Specifically, we impose the microstructural
displacement boundary conditions by the affine boundary
condition as:

um( p) = EM� p ∀ p ∈ �0m (7)

where the microstructural displacement boundary condition
um depends on the macro strain tensors EM (generated from
GP interpolations) and the relative coordinates � p of the
nodes on the microstructural boundary �0m . From this BVP,
we proceed to solve the microstructural local stress Sm , and
compute the effective stress SM via Eq.2.

In Sect. 4.1.1 we detail the specific values of ζ1 and ζ2
(user-defined DoE sampling constraints), nc (number of con-
trol points for random strain), n p (number of deformation
paths), and nload (number of sequential loading steps) that
we use in our experiments.

3.2 Vanilla Data-Driven Surrogate

In this sectionwefirst review theworking principles ofRNNs
and then explain how to use the generated data in Sect. 3.1 to
train a vanilla data-driven RNN (in Sect. 4.1.2 we compare
the accuracy of this RNN to the physics-constrained RNN
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Fig. 2 Example deformation paths in 3D simulations: Ten random strain paths are illustrated. The normal and shear strain components are
shown in (a) and (b), respectively. The 2D projections of these strain paths are provided in (c)-(e) for normal components and in (f)-(g) for shear
components

of Sect. 3.3). We also discuss the limitations of excluding
domain knowledge from the training process.

RNN is a special type of NN that is designed to learn from
sequences (e.g., time series data) which cannot be accurately
learned by basic NNs such as feed-forward neural networks
[47, 48] (FFNNs, aka multi-layer perceptrons). FFNNs are
a collection of neurons arranged in multiple layers such that
each neuron has one-way connections to the neurons of the
subsequent layer. In an FFNN, each neuron performs a rel-
atively simple mathematical operation where a (typically)

nonlinear activation function is applied to the summation of
a bias term and a weighted sum of the neuron’s inputs as:

xl = f
(
W l xl−1 + bl

)
(8)

where f is a vector of activation functions (e.g., hyperbolic
tangent, rectified linear unit or ReLU, leakyReLU, or swish),
xl−1 are the outputs of the previous layer’s neurons, W l and
bl are the weight matrix and bias vector of the layer l, respec-
tively, and xl are the outputs of layer l.
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Fig. 3 Computational graph of vanilla data-driven RNN: a Folded
and unfolded representations of an RNN that maps a sequence of inputs
to a sequence of outputs. ht is the state variable and captures the effects
of the past on the present. b Internal structure and data flow in an RNN

cell at time instance t where a hyperbolic tangent function maps the
weighted current inputs and hidden variables from the previous time
step to the current outputs and hidden variables

Operations such as the one in Equation (8) cannot effi-
ciently learn from sequences as their structure does not have
a mechanism to leverage the past in predicting the current
response. RNNs [49] address this issue via the so-called state
variables4 that capture the effects of the past events (i.e., past
inputs/outputs in the sequence) on the current response. To
demonstrate this, we draw an RNN cell and its equivalent
unfolded computational graph in Fig. 3a where the RNN cell
relates the input sequence xt to a series of outputs yt with t
representing the pseudo-time (equivalent to our load steps).
The mathematical operations that an RNN cell performs at
time step t are schematically demonstrated in Fig. 3b and
read as:

ht = tanh(Whhht−1 + W xhxt + bh) (9a)

ŷt = Whyht + by (9b)

where the hidden state ht depends on the current input
state xt and the previous hidden state ht−1. In addition,
W xh , Whh , and Why are weighting matrices corresponding
to input-to-hidden, hidden-to-hidden, and hidden-to-output
affine transformations, respectively. bh and by are the bias
terms associated with ht and estimated outputs, respectively.

As indicated in Fig. 3, regardless of the sequence length,
an RNN always has the same input size because it is speci-
fied in terms of the transition from one state to another state
rather than being specified in terms of a variable-length his-
tory of states. That is, the same transition function with the
same parameters is used at every time step. This parameter

4 Interestingly, state variables are also used in classical constitutive laws
such as the over-stress tensor that is used when modeling multi-axial
large-strain kinematic hardening.

sharing provides RNNs with major advantages over FFNNs
in sequence learning.

RNNs are data-intensive models especially when learning
complex and long sequences. They also suffer from numeri-
cal issues such as vanishing and exploding gradients [50] that
prevent the RNN from learning long-range dependencies. To
address these issues, more advanced cells such as long short-
term memory (LSTM) [51] and gated recurrent unit (GRU)
[52] are developed. In this work, we employ GRU cells and
review their structure in Appendix D.

WhileGRUcells aremore efficient thanvanillaRNNcells,
they still need large training data to achieve sufficient accu-
racy. This sufficiency condition is driven by our application,
that is, our RNN should be accurate enough such that amulti-
scale simulation converges to the ground truthwhen theRNN
is used as the microstructural material model at all macro
IPs. In addition to being data-intensive, the performance of
RNNs is sensitive to factors such as the architecture and train-
ing mechanism (e.g., batch size, learning rate, regularization
weight, etc.). To reduce the reliance on data and sensitivity to
these factors, in Sect. 3.3 we propose to use domain knowl-
edge in designing the architecture and loss function of the
RNN.

3.3 Physics-Constrained Surrogate

The samples in our training dataset are expensive since
obtaining the microstructural response under a deformation
path requires running 3D elasto-plastic simulations with
damage. Hence, we cannot afford to build a very large train-
ing dataset which, in turn, challenges building an accurate
RNN. To address this issue, we leverage domain knowl-
edge as model constraints to design the architecture and
loss function of our RNN. Our additions allow to reduce
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the number of trials that an analyst has to test before find-
ing a goodmodel. This reduction is particularly advantageous
since training RNNs relies on back-propagation through time
(BPTT) which cannot be parallelized (as the forward propa-
gation graph is inherently sequential, i.e., each time step can
only be predicted after the previous one is already computed)
and is also memory intensive (since all the values computed
in the forward passmust be stored until they are reused during
the backward pass).

3.3.1 Soft Constraint: Thermodynamics

Let us assume an arbitrary micro point in a microstructural
analysis is subject to an iso-thermal elasto-plastic deforma-
tion. We can compute its total work rate per unit volume Ẇ
via thermodynamics principles [53] as:

Ẇ = ψ̇ + � (10)

where ψ̇ represents the rate of Helmholtz free energy and �

accounts for the rate of dissipated energy including the dis-
sipation from plasticity, damage, damping, etc. For general
elasto-plastic material behaviors, we can decompose the rate
of work into elastic and plastic parts:

Ẇ = Ẇ el + Ẇ pl (11)

where the elastic work rate Ẇ el of the micro IP is equal to
the rate of recoverable elastic free energy or strain energy
ψ̇el , while the plastic work rate Ẇ pl is equal to the sum of
the conditionally recoverable plastic free energy ψ̇ pl and the
irrecoverable dissipation rate [54]. That is:

Ẇ el = ψ̇el = Sm : Ėel
m; Ẇ pl = ψ̇ pl + � = Sm : Ė pl

m

(12)

We write the total rate of work per unit volume Ẇ of an
RVE as the multiplication of the micro stress Sm and the rate
of microscopic total strain Ėm :

Ẇ = Sm : Ėel
m + Sm : Ė pl

m = Sm : Ėm (13)

where we use the additive decomposition rule for the strain.
We compute the total work by integrating the work rate over
the time interval and spatial domain �0m . Additionally, we
compute the total work by invoking the Hill-Mandel energy
condition from Eq.1 while assuming the strain rates are in
the hyperspace of the virtual strains:

W =
∫
t

∫
�

Ẇ d�0m dt =
∫
t

∫
�

Sm : Ėm d�0m dt

= |�0m |
∫
t
SM : ĖM dt = |�0m |

∫
t
SM dEM

(14)

We now decompose this total work to its components to
find the constraints that the effective macroscale stress and
strain fields should satisfy. We write W as a summation of
total strain energy Wel and total plastic work W pl :

W = Wel + W pl (15)

Assuming linear elasticity, we can show the total strain
energy of the RVE as:

Wel =
∫
t

∫
�

Sm : Ėel
m d�0m dt =

∫
�

∫
Eel
m

Sm dEel
m d�0m

= 1

2

∫
�

Eel
m : Cel

m : Eel
m d�0m ≥ 0

(16)

whereCel
m represents the elastic modulus of a micro IP which

is equal to (1 − Dm)Cel if damage occurs (with a micro
damage parameter Dm) and Cel if there is no damage. Since
0 ≤ Dm ≤ 1, it is straightforward to see Wel ≥ 0.

Similarly, we can computeW pl by spatiotemporally inte-
grating Ẇ pl , and it is equal to the sum of total dissipated
energy and total plastic free energy as:

W pl = Wdi + W pf (17)

whereWdi canbe expressed as the spatiotemporal integration
of the non-negative dissipation rate:

Wdi =
∫
t

∫
�

� d�0m dt ≥ 0 (18)

where the non-negativity is due to the fact that � ≥ 0. The
total plastic free energy equals the integrated rate of plastic
free energy:

W pf =
∫
t

∫
�

ψ̇ pl d�0m dt =
∫

�

ψ pl d�0m (19)

where ψ pl stands for the density of the plastic free energy
in the RVE and it can be decomposed into isotropic and
anisotropic parts [54] as:

ψ pl = ψ
pl
iso + ψ

pl
ani ; ψ

pl
ani = ψ

pl
kin − ψ

pl
dis (20)

whereψ
pl
iso,ψ

pl
ani ,ψ

pl
kin , andψ

pl
dis represent the constituents of

plastic free energy density from isotropic, anisotropic, kine-
matic, and distortional deformations, respectively (ψ pl

dis is
related to the distortional strain hardening with directional
distortion of the yield surface but exploring this relation is
not in the scope of this work).We can calculateψ

pl
iso andψ

pl
kin

via [55]:

ψ
pl
iso = c1

2ρ
k̄2; ψ

pl
kin = c2

2ρ
ᾱi j ᾱi j (21)
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Fig. 4 Computational graph of physics-constrained RNN architec-
ture: In this architecture, we illustrate the GRU cells at different time
instances with their corresponding inputs and outputs. Intermediate
variables are obtained from GRU+FFNN outputs and then used to
impose hard constraints. HC1 corrects D̂t to be non-decreasing, and

HC2 computes the damaged stress Ŝt using the undamaged stress Ŝ
0
t

and the corrected effective damage parameter D̂′
t . In addition, we use

solid arrow lines to represent the data flow directly associated with the
last two time steps shown in this figure and dash lines to represent the
data flow from the previous time steps

where k̄ and ᾱi j are, respectively, the thermodynamic conju-
gates to the size of the yield surface and the deviatoric back
stress tensor that represents the center of the yield surface,
and ρ is the material density. c1 and c2 are two non-negative
material constants depending on the type of material models.
We can therefore express the total plastic free energy as:

W pf =
∫

�

(
c1
2ρ

k̄2 + c2
2ρ

ᾱi j ᾱi j

)
d�0m ≥ 0 (22)

By plugging Equations (16, 18, 22) into Equation (14), we
show that for an RVE (associated with a macro element)
that is subject to a generic deformation with hardening and
softening, its effective macroscale stress and strain satisfy
the following constraint:

∫
t
SM dEM ≥ 0 (23)

3.3.2 Hard Constraint: Damage Parameter

Our RNN is designed to predict the current stress tensor (St )
and damage variable (Dt ) given the history of the strain ten-
sor (E0, · · · , Et ). That is, a sequence of strain tensors (up to
and including the current load step) is the input of the RNN
while the current stress tensor and damage parameter are the
RNN’s outputs.

As schematically shown in Figure,4 we make several
important changes to the vanilla data-drivenRNNof Sect. 3.2
which directly learns the relation between (E0, · · · , Et ) and
(St , Dt ). Specifically, we append the outputs of the RNN
cells with two FFNNs and choose (S0t , Dt ) as the outputs,
that is, we use the effective reference stresses (which exclude

the effect of damage) as opposed to the damaged stresses. In
addition, by considering the fact that our studied material is
not self-healing during deformation, we hard-code the phys-
ical requirement on the damage parameter into the network
such that its predictions are always non-negative and non-
decreasing for any arbitrary deformation path that is fed to
the network.

The rationale behind learning S0t instead of St is that it
forces the state variables of our RNN to learn hardening
(characterized via the effective reference stresses) and soften-
ing (characterized by the damage parameter) in a decoupled
manner. The damaged stresses are then obtained by combin-
ing the two output pairs in the FFNNs as (the hats indicate
that the variables are predicted by the network):

Ŝt = (1 − D̂′
t )Ŝ

0
t (24)

which is used by continuum damage mechanics, see Equa-
tion (A-3). The advantage of this decoupling or hard-coding
the RNN to learn (S0t , Dt ) is that it reduces the network size
as the network no longer needs to internally learn the relation
in Equation (24). Given that we cannot build a particularly
large training dataset, small networks are preferred in our
application.

Since our material does not heal itself during the irre-
versible damage process, D̂t should be non-decreasing along
any deformation path. We mathematically represent this
requirement as:

Ḋt = ∂Dt

∂t
≥ 0 (25)
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where Ḋt is the damage rate, and Dt is the effective damage
parameter at time step t that can be computed from an RVE’s
effective damaged and reference stresses, seeEquation (A-4).
Equation (25) is not necessarily satisfied by the vanilla data-
driven network in Fig. 3a, and thus we develop an efficient
numerical scheme to explicitly enforce it. To this end, we first
use D̂t and D̂t−1 to compute the damage increment�D̂t and
then update the damage parameter via the following scheme
that ensure the damage increments are always non-negative:

D̂′
t = D̂t +

t∑
τ=1

(
�D̂τ ×

(
0.5 × sign(�D̂τ ) − 0.5

))

∀t ∈ {1, 2, . . . , nload − 1} (26)

where we note that �D̂τ = D̂τ − D̂τ−1 and D̂′
0 = D̂0 =

0. D̂′
t indicates the corrected effective damage parameter

which is then used in Equation (24) to compute the dam-
aged stresses. The predicted (Ŝt , D̂′

t ) are then compared to
the ground truth as described in Equation (28) to minimize
the loss function as described in Sect. 3.3.3.

3.3.3 Formulation of Loss Function

We design a composite loss function to be minimized via
mini-batch stochastic gradient descent. The first component
of this loss is the reconstruction error which at the arbitrary
time instance t ∈ {1, 2, . . . , nload} is calculated as:

l0t = 1

dout

1

nb

nb∑
b=1

‖ ybt − ŷbt ‖2 (27)

where dout is the dimension of outputs, ‖ · ‖2 indicates the l2
normof vectors, nb is the size of themini-batch, and yt and ŷt
represent the ground truth and predicted values, respectively.
In our case, yt = (St , Dt ) and hence dout = 7.

The second part of our loss function follows Equation (23)
of Sect. 3.3.1 which indicates that the total internal work at
an arbitrary macro IP can be computed from its associated
RVE’s homogenized stress and strain tensors, and that its
value should be non-negative at any time instance:

l1t = 1

nb

nb∑
b=1

ReLU

(
−

∑
t

(
Ŝ
b
t : �Eb

t

))
(28)

where we approximate the total internal work at time step
t by summing incremental internal works (which are com-

puted by the predicted current stress Ŝ
b
t ) and the incremental

strain �Eb
t in a training batch, i.e., �Eb

t = Eb
t − Eb

t−1. We
use the rectified linear unit (ReLU) defined as ReLU (x) =
max(x, 0) ≥ 0 in Eq.28 to ensure the total loss is not penal-
ized if the internal work is positive. We define the RNN’s

composite loss function as:

L =
nload∑
t=1

lt ; lt = l0t + λl1t (29)

where λ is a scalar that controls the contributions of l1t to the
overall loss. To estimate an appropriate value for λ, we train
a few RNNs and choose the one whose corresponding RNN
achieves the smallest error on validation data. In this work,
we use λ = 10−6. A more systematic way to determine λ is
through an adaptive weighting study [56].

As described above we enforce the two physics con-
straints within our RNN architecture by using two different
approaches. While we implement the energy constraint in
Eq.28 as a soft constraint by adding an associated penalty
term in the loss function, we enforce the damage constraint
in Equation (25) as a hard constraint by imposing architec-
tural modifications and post-processing RNN cells’ outputs
by using the intermediate variables in the network. While
the hard constraint always guarantees that the required con-
ditions are met, it may lead to a stiffer optimization problem
[57] in training. Additionally, hard constraints require archi-
tectural modifications which may be difficult to implement
for complex physical conditions. In our studies, the architec-
ture in Fig. 4 resulted in more accurate models compared to
cases where the constraint in Equation (25) was enforced by
penalizing the loss function.

3.3.4 Teacher Forcing

The networks presented so far have recurrent connections
between the output at one time step and the hidden units at the
next time step. Compared to models with hidden-to-hidden
connections, these networks are less powerful since their out-
puts should capture all of the information about the past that
is needed in predicting the current state. One technique for
addressing this issue is teacher forcing [58] which refers to
networkswhose outputs are fed back into themodel via recur-
rent connections. Figure5 schematically demonstrates such
a model with one look-back step where only the previous
output is fed back into the model (more look-backs are pos-
sible).

As illustrated in Fig. 5, training and testing are done
slightly differently in the presence of teacher forcing. At the
offline training stage, we provide the ground truth (RVE’s
effective stresses and damage variable) at the previous time
step as inputs at the next time step. At the online testing stage,
we must use the predictions at the previous time step since
the ground truth is unavailable.

Teacher forcing reduces the training time and provides
smaller closed-loop reconstruction errors. However, net-
works with teacher forcing typically struggle in open-loop
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Fig. 5 a In training, the current input is augmented with the ground truth from the last time step. b During testing, the inputs are augmented with
the predictions from the previous time step

applications where the ground truth is unavailable. While
some training techniques (such as intentionally corrupting
the outputs before they are fed back into the model) allevi-
ate this issue to some extent, large errors can still appear.
As we demonstrate in Sect. 4, using an RNN in a multiscale
simulation is indeed an open-loop application where teacher
forcing provides poor performance.

3.4 Surrogate Integration with Multiscale Solvers

Our trained RNN surrogates the computationally expensive
micro-solver in a multiscale simulation. The online deploy-
ment of the RNN surrogate within an iterative solver poses
some difficulties. During training the RNN has access to the
deformation and effective response histories at all nload load
steps. Comparatively, in the online computations, only the
previous strains and responses are available and even the con-
verged macro strains at the current load step are unknown
(in conventional numerical solvers these macro strains are
found iteratively by solving the equilibrium equations, see
Sect. 2).We address these difficulties by explicitlymodifying

the input sequences and implicitly resetting RNN’s hidden
variables amid iterations.

We embed our trained RNN in a multiscale model per the
pseudo-code in Algorithm1 which primarily aims to inte-
grate the RNN with the Newton–Raphson method. In the
presence of nonlinear deformations, the Newton–Raphson
method is typically used to iteratively solve for the material’s
path-dependent responses. This method essentially consists
of a double-loop structure where the outer loop incremen-
tally steps along the applied load while the inner loop aims
to match internal and external forces by iteratively updating
the material response under a fixed loading condition.

In a typical step of a multiscale simulation, we compute
the macro strain tensor at an arbitrary IP from equilibrium
equations within the inner loop. By appending the strains at
the current iteration to the sequence of previous convergent
strains, the length of the strain sequence equals the current
load step number that is smaller than nload (nload is the
required length of the RNN’s input sequence). To address
this mismatch, we repeat or pad the value of the current strain
multiple times at the end of the strain sequence. This padding
only makes the strain sequence compatible with the RNN’s
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i = 1, 2, . . . , nload ; /* Newton step number
*/
j = 1, 2, . . . , niter ; /* Newton iteration
number */
k = 1, 2, . . . , nmip ; /* Number of macroscale
IPs */
ε = 10−6 ; /* Convergence criterion */
while i ≤ nload do

while j ≤ niter do
(1) Read macro strain E j

i from macro
equilibrium equation
(2) Append E j

i to the convergent strain sequence

{Ec
1, E

c
2, . . . , E

c
i−1, E

j
i }

(3) Add (nload - i) replicate padding of E j
i to the

end of the sequence in (2)
while k ≤ nmip do

(4) Perform RNN inference on the updated
strain sequence for each macro IP

end
(5) Retrieve RNN’s outputs for the effective
responses at the step i
(6) Solve macro equilibrium equation
if ‖ f int − f ext‖ ≤ ε then

Update convergent strain Ec
i = E j

i
Continue to the next load step: i ← i + 1
Break ; /* Iteration convergence
*/

else
Continue to the next iteration: j ← j + 1

end
end

end
Algorithm 1: Integration of RNN in multiscale analysis

input, but also implicitly freezes the RNN’s hidden variables
at the current step within the iterations (inner loop). This
freezing happens because the values of the hidden variables
at the current time instance are decidedby the state of network
parameters and the inputs from previous time instances, see
Equation (9). This freezing is akin to the classic radial return
algorithm in plasticity models where material state variables
are only updated upon convergence. We also emphasize that
the number of load steps in the multiscale simulation should
be smaller than or equal to the sequence length ofRNN inputs
(nload ), since a larger step number results in data truncation
during input data preparation and erroneous RNN inference
(in our case, nload is chosen large enough to prevent trunca-
tion).

4 Numerical Experiments

In this section, we first illustrate the efficacy of our physics-
informedRNN in predictingmicrostructural effective behav-
iors in Sect. 4.1 where we assume micro porosity as the
only material defect. We then perform the computation of
multiscale elasto-plastic hardening and softening simula-
tions in Sect. 4.2 by integrating our RNN (as a surrogate of
microstructural analysis model) with a macro FEM solver.
In Sect. 4.3, we deploy our multiscale surrogate model to
perform a mesh convergence study on a component with dif-
ferent spatial discretization levels to simulate macro damage
patterns. In the experiments, we record computational costs
and perform accuracy analysis.

We build our RNN via TensorFlow in Python. We gen-
erate the database of microstructural effective responses on
a state-of-the-art high-performance cluster (HPC) which has
60 CPU cores (AMD EPYC processors) and 360 GB RAM.
We train the RNN model on the HPC via two GPU units
(NVIDIA Tesla v100) with 32 GB RAM. For multiscale
simulations, we develop a dedicated program to integrate
our RNN model within a multiscale analysis engine which
is implemented in Matlab. We note that all data-driven mul-
tiscale computations in Sects. 4.2 and 4.3 are conducted on a
64-bit Windows desktop with four CPU cores (Intel i7-3770)
and 16 GB RAM.

4.1 Surrogate of Microscale DamageModeling

We aim to use the proposed surrogate to accelerate damage
analysis for metallic alloys with process-induced porosity.
Specifically, we analyze cast aluminum alloy A356 whose
heterogeneity is represented by microstructures with two
material phases: a void phase (representing porosity) and a
material phase. The latter phase is presumed to have isotropic
homogeneous properties (without considering local material
features such as impurities or grain structures and interfaces).
Therefore, we can simulate damage propagation within the
material phase by using classic continuum damage mechan-
ics as argued in Section A.

We assume that the A356 has an elastic modulus of 5.7e4
MPa and a Poisson’s ratio of 0.33, and its isotropic elasto-
plastic hardening behavior follows an associative plastic flow
rule with the Von Mises yield surface defined by:

S ≤ Sy(Ē
pl) (30)

where S and Sy are, respectively, the Mises equivalent stress
and the yield stress which depends on the equivalent plas-
tic strain Ē pl . To model strain hardening, we assume the
relation between Sy and Ē pl is piecewise-linear as shown
by the hardening curve in Fig. 6. For modeling softening, we
employ the damage continuummodel discussed in Section A
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Fig. 6 Elasto-plastic hardening behavior: We use a piecewise linear
hardeningmodel to define the elasto-plastic behavior of aluminum alloy
A356

with the fracture strain E f of 0.067 and the fracture energy
G f of 1.92e4 N/m.

4.1.1 Database Generation of Microstructural Effective
Responses

We solve micro BVPs on a microstructure whose geome-
try and mesh are illustrated in Fig. 7a. The microstructure is
made out of A356 and contains a spherical pore at its center.
Even though classic FEM with sufficiently fine mesh, e.g.,
see Fig. 7b, can provide high-fidelity solutions to BVPs, it
is generally expensive, especially for the response database
generation. To improve computational efficiency, we apply
mechanisticDCA-basedROM[25, 26, 59] to solve theBVPs.
Compared to FEM, our ROM strikes a good balance between
efficiency and accuracy by agglomerating elements into clus-
ters, e.g., see Fig. 7c where material IPs in the same cluster
are assumed to share identical elasto-plastic behaviors.

We note that a mesh independence study is often required
in material softening simulations to choose a proper spa-
tial discretization for solution convergence [59, 60]. We
conduct the microscale mesh convergence investigation in
Appendix C where we systematically compare the softening
behaviors between FEM and ROM for the RVE in Fig. 7a
and show that our ROMwith 1, 200 clusters predicts consis-
tent post-failure behaviors as the FEM while being 10 times
faster. Hence, we choose the ROM with 1, 200 clusters to
build our database and consider this ROM as the ground truth
when validating the data-driven surrogates in the following
experiments.

To generate the database, we set the sampling constraint
for the strain magnitude as ζ1 = 10% and the constraint of
the volumetric strain as ζ2 = 4%. For the GP interpolation,
we set the number of control points with random strain val-
ues as nc = 5. Our database contains a total to n p = 30, 000
deformation paths and RVE effective responses where each
path includes six strain components, six effective stress com-

ponents, and one effective damage variables at nload = 101
sequential loading steps.Generating this database costs about
ten-day computational timeon theHPCby exploiting parallel
computing with 60 CPU cores.

4.1.2 Impacts of Physics Constraints

To demonstrate the impacts of the two physics constraints
in Sect. 3.3, we compare the prediction accuracy of a pure
data-driven vanilla model against our RNN model. For
this comparison, we randomly choose 200 deformation-
responses sequences as a test set. We further randomly select
6, 000, 12, 000, 18, 000, 24, 000 and 29, 800 sequences
from the database to form five different training-validation
datasets. For all training-validation datasets, we split them
into 80% for training set and 20% for validation set. For
example, the dataset of the size of 6, 000has 4, 800 sequences
for training and 1, 200 for validation. We point out the
training and validation sets serve different purposes, as the
training set is used to iteratively update learning parameters
during BPTT, while the validation set is used to detect over-
fitting or underfitting.

During training, we normalize all data sequences and use
1, 200 epochs with a batch size of nb = 64.We choose Adam
as the optimizer with an adaptive learning rate that starts at
10−3 and reduces by 25% when the validation error is not
reduced over 30 training epochs. We terminate the training
process when the training reaches the maximum number of
epochs or the loss function is not improved by 10−7 over
50 epochs. We use mean squared error (MSE) to measure
accuracy:

MSE = 1

ntnloaddout

nt∑
m=1

nload∑
t=1

dout∑
i=1

(
ymi,t − ŷmi,t

)2 (31a)

MSES = 1

ntnloaddS

nt∑
m=1

nload∑
t=1

dS∑
i=1

(
Smi,t − Ŝmi,t

)2
(31b)

MSED = 1

ntnload

nt∑
m=1

nload∑
t=1

(
Dm
t − D̂m

t

)2
(31c)

where MSE accounts for the total prediction error including
both stress and damage predictions, while MSES and MSED

are the prediction error for stress and damage, respectively. nt
and dout are the number of data sequences in the test set and
the dimension of outputs. ymi,t and ŷmi,t are the ground truth

and prediction for the i th output component at the t th load
step for themth test sample. In addition, dS , Smi,t , Ŝ

m
i,t , D

m
t and

D̂m
t are the number of 3D stress components, true stress, pre-

dicted stress, true damage and predicted damage variables,
respectively, i.e., ymi,t = (Smi,t , D

m
t ). We note that the values

of nt , dout and dS are equal to 200, 7 and 6, respectively.
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Fig. 7 The geometry, dimension and mesh of our RVE: a The dimension (unit: μm) of our RVE that contains a spherical pore at center with a
pore volume fraction of 6.25%; b The RVE is discretized by 15, 000 finite elements; and c Our ROM with 1, 200 clusters

Fig. 8 Convergence study: We compare the total MSE between the
pure data-driven model and the proposed physics constrained RNN
model to demonstrate the effectiveness of using constraints and domain
knowledge in designing the RNN. The errors are computed on the same
test dataset which has 200 deformation-response sequences

Furthermore, we set the penalty parameter as λ = 10−6 in
the customized loss function in Eq.29.

After the 10 models are trained on the five different
training-validation datasets, we compare their prediction
errors on the same test set that is unseen amid the entire
training process, see Figs. 8 and 9. For the overall MSE, we
find that as the sizes of training-validation datasets increase
from 6, 000 to 29, 800, the MSEs of both models decrease
dramatically from about 7×10−5 to 3×10−5. It is clear that
the overall MSE of our proposed model is always lower than
that of the vanilla model.

To provide more insights into the performance of two
models across the different data set sizes, we report theMSEs
that each model achieves in terms of stresses and damage
variable, see Fig. 9 and Equation (31). It is evident that the
proposed model provides a higher accuracy than the vanilla
model. Particularly, on the smaller datasets (6, 000 or 12, 000
sequences) with a limited amount of training data, the pre-
diction error of our physics constrained RNN is about 60%
lower than the vanilla model. As the size of the training data
increases, we observe that the gap decreases. A similar trend

is observed for the damage variable except that the gap in the
performance is smaller.

To visualize the predicted effective responses by our
physics-constrained surrogate model, we randomly select
four strain paths from the test set and compare our pre-
dictions against the ground truth, see Fig. 10. We observe
that our RNN provides accurate predictions for all effective
stresses and the damagevariable even though thedeformation
paths are quite complex. In particular, we observe that as the
damage variable increases to 1.0 amid material deformation,
the magnitudes of the effective stresses are correspondingly
reduced (which indicates that theRVE’s load-carrying capac-
ity significantly decreases).

Our surrogate model approximates the elastoplastic-
damage behaviors of porous metallic alloys which typically
fracture within small strain ranges. As shown in Fig. 10,
the typical strain ranges of our studied material in realistic
applications are relatively small, i.e., the metallic aluminum
matrix fractures before high strains occurs. Hence, we can
assume the results based on the small and finite strain formu-
lations are similar. In our dataset generation step of Sect. 3.1,
we went above this range to ensure that we sufficiently sam-
ple deformation paths with different strain values. For the
above reasons, we presume that an infinitesimal strain the-
ory can be used for simulating the deformation of A356. A
more accurate approach can be obtained by leveraging a finite
strain theory in the data generation step.

4.1.3 Impacts of Teacher Forcing

As discussed in Sect. 3.3, teacher forcing, which augments
ground truth or predictions from previous steps to the input at
the current step during training, can provide an effective way
for improving the accuracy of RNNs. To quantify the impact
of teacher forcing,we compare the totalMSEof the predicted
stress and damage variables over the test dataset between
our physics-constrained RNN model with and without the
teacher forcing technique in Table 1.

We implement two teacher forcing models here: the first
model with the number of look back step (NLB) of one, and
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Fig. 9 MSE on predicted stress and damage: We compare the vanilla RNN and our physics constrained RNN models based on MSE in stresses
and damage variables

the second model with the NLB of five. From Table 1, we
observe that compared to the model without teacher forc-
ing, the two teacher forcing models reduce the total MSE by
21.4% (NLB=1) and 24.2% (NLB=5), respectively. Com-
paring the individual MSEs, we find that teacher forcing
reduces the prediction error of effective damage while not
for the stress. Therefore, in single-scale RVE simulations,
the teacher forcing improves our RNN’s overall prediction
accuracy. However, as we show next, teacher forcing signif-
icantly reduces the performance in multiscale simulations.

4.2 Surrogate of Multiscale DamageModeling

After we demonstrate that our RNN can accurately predict
microstructural effective responses under various deforma-
tion paths in Sect. 4.1. We can now use the RNN as a
faithful surrogate to replace the computationally expensive
microstructural analysis in multiscale simulations.

We design a 3D L-shape bracket for our multiscale sim-
ulation as in Fig. 11a. The bracket is subject to a Dirichlet
boundary condition on the left side along the x-axis while its
right surface is fully fixed in all directions. Based on single-
scale damage simulations on the same L-shaped bracket [59]
it is observed that strain concentrations appear around its
sharp corner and result in damage propagation from the cor-
ner to the outer surface. Therefore, we create a sufficiently
large multiscale region around this zone to associate macro
elements with porous microstructures. Specifically, we asso-
ciate each IP of the multiscale domain with a porous RVE as
illustrated in Fig. 7. To save computational costs, we assume
there is a mono-scale domain outside the multiscale domain
where the IPs are not associated with any RVEs. We mesh
the bracket by 5, 300 tetrahedral elements of reduced inte-
gration. The multiscale domain contains 360 elements each

of which is associated with an RVE that is decomposed by
1, 200 clusters.

We first demonstrate the accuracy of the multiscale model
for elasto-plastic hardening behaviors under complex cyclic
loading histories. To this end, we subject the bracket to a
loading-unloading-reloading condition by setting the Dirich-
let boundary condition as d = 0 → 2 → 0 → −2 mm. We
compare the resulting reaction force and displacement curves
between our proposed FE-RNN approach and the benchmark
FE-ROM method in Fig. 11b.

As shown in Fig. 11b we observe that teacher forcing,
either with one or five look back steps, provides erroneous
results which are due to the fact teacher forcing leverages
the historical predictions (i.e., stresses and damage variable
predicted for previous load steps) in estimating the current
stresses and damage variables. However, these historical pre-
dictions are highly noisy since they suffer from errors that
are (1) accumulated: since erroneous predictions are fed back
into the model and propagated forward (see Fig. 5), and (2)
compound: since the predictions at any macro IP affect the
predictions at other IPs. Following these results, we adopt
our FE-RNN model without teacher forcing for all multi-
scale simulations in the following experiments (note that this
multiscale simulation is different from the single-scale study
in Sect. 4.1.3 where we use different RNNs to surrogate the
effective responses of an RVE).

We compare the Von-Mises stress distributions between
the benchmark and our FE-RNNmodel by setting the bound-
ary condition as d = −2 mm, see Fig. 12. We observe a
good agreement between the two models and only observe
minor local discrepancies at the sharp corner. These errors
are primarily due to the fact that RNN’s prediction accuracy
decreases at extreme cases which are insufficiently sampled
at the training stage. We also note that deep NNs (including
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Fig. 10 RVE deformation and responses from RNN versus ground truth: We demonstrate four test samples with different strain paths (the first
column where each path contains six strain components with 100 steps) and their associated effective stresses and damage variable (the second
column)
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Table 1 Impacts of the teacher forcing on single-scale predictions:
Comparison of the total MSE and individual MSEs (10−5) of the pre-
dicted effective stress and damage variables over the test set between our

physics constrained RNNmodel (trained by 29,800 sequences) without
teacher forcing and the same model with teacher forcing using one or
five look back steps

No teacher forcing Teacher forcing (NLB=1) Teacher forcing (NLB=5)

Total MSE 2.52 1.98 1.91

MSES 4.14 4.62 4.54

MSED 17.30 9.67 9.24

Fig. 11 Multiscale model of the L-shape bracket: a Every macroscale
IP in themultiscale domain is associatedwith amicroscale porous RVE;
and bComparison of the load–displacement curves of the elasto-plastic

hardening behaviors between benchmark and the proposed FE-RNN
models with and without teacher forcing

RNNs) are notorious for poor extrapolation ability and pro-
vide poor predictions for rare events that are insufficiently
seen during training (e.g., the sharp drop in the stress–strain
curve upon fracture).

In our second multiscale experiment, we simulate the
elasto-plastic hardening and softening of the same L-shape
bracket where its Dirichlet boundary condition is set as
d = 10 mm. To prevent the occurrence of the non-physical
single-layer fracture bands as discussed in Section A, we
apply a non-local damage function (see Eq.A-5) with a strain
localization bandwidth of ld = 15 mm, see Fig. 13a for a
comparison between ld and the mesh size of the bracket.
The force-displacement curves are compared in 13b where
the general trends of the two methods match well especially
in the hardening section. Minor discrepancy manifests in
the softening regime where the data-driven model tends to
break earlier which underestimates the component’s load-
carrying capacity by about 2.5%. The underlying reason is
that softening behaviors dramatically increase the complex-
ity of thematerial’s governing equations and our training data
has much less information on softening than on hardening.

We now compare the distributions of damage variables
and Von-Mises stresses when the boundary condition is set

as d = 10 mm, see Figs. 14 and 15, respectively. We see that
both field variables have good agreements between the two
approaches. In Fig. 14, we observe that the fracture bands
initiate from the sharp corner and stretch towards the right
surface. We can also clearly see the effects of imposing non-
local damage functions in avoiding non-physical single-layer
fracture bands. As for the stress distributions in Fig. 15, both
approaches show that the local stress values are significantly
reduced within fracture bands that indicates a loss of load-
carrying capacity in the fractured elements. We observe a
minor discrepancy of local stresses at the front tip of the frac-
ture bands between the two methods: while the benchmark
indicates relatively low stresses at the highlighted region,
our FE-RNNmodel suggests stress concentrations triggering
more damage if the component is further deformed. These
stress concentrations explain why our data-drivenmodel pre-
dicts an earlier damage occurrence than the benchmark in
Fig. 13b.

The discrepancy between the proposed model and bench-
mark can be further quantified by the histogram of errors as
shown in Fig. 16. In terms of damage variables, it is quite
clear from Fig. 16a that the two approaches yield identical
solutions in themajority (more than 80%) of elements. Based
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Fig. 12 Comparison of
Von-Mises stress distributions in
hardening simulation: a The
ground truth distribution of
Von-Mises stresses (unit: Pa)
and d Von-Mises stresses by the
proposed FE-RNN model

Fig. 13 Damage simulations of
the L-shape bracket: a The
macroscale discretization and
strain localization bandwidth
applied in the damage function;
and b Comparison of the
softening load–displacement
curves between benchmark and
the proposed FE-RNN model

Fig. 14 Comparison of damage
patterns: a The distribution of
benchmark damage variables;
and d Damage variables via our
FE-RNN model where yellow
indicates a full material fracture
while blue represents an intact
state

Fig. 15 Comparison of
Von-Mises stress distributions in
softening simulation: a The
distribution of benchmark
Von-Mises stresses (unit: Pa);
and d Von-Mises stresses by our
FE-RNN model
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Fig. 16 Histogram of relative errors of field variables: a Relative errors of the values of damage variables between benchmark and our FE-RNN
model in Fig. 14; and b Relative errors of the values of Von-Mises stresses in Fig. 15

Table 2 Breakdown of computational costs of the L-shape bracket
model: Despite considerable costs in database generation and training
of the RNN, its efficiency (measured by clock time) in the multiscale

simulations is about 125× and 1240× higher than ROM and FE2,
respectively, where the time estimation of FE2 comes from the time
comparison in Fig. 21b

FE-RNN (proposed) FE-ROM (benchmark) FE2 (estimated)

Database generation 239.5 × 60 CPU-hour - -

RNN training 4.3 × 2 GPU-hour - -

Multiscale simulation 0.4 × 4 CPU-hour 49.8 × 60 CPU-hour 494.0 × 60 CPU-hour

on the distributions of stress errors in Fig. 16b, we can see
relatively large errors in about 2% of all elements. It should
be noted, however, for most elements, their absolute errors
are smaller than about 10% between the two methods.

To quantify computational efficiency, we break down the
costs of different steps in this multiscale model as shown
in Table 2. Compared to the mechanistic models (FE-ROM
and FE2), our data-driven model (FE-RNN) requires addi-
tional costs on database generation and model training. Even
though expensive, we only need to perform the two steps
once, and after trainingwe can deploy the trainedRNNmodel
for any multiscale simulation without extra costs. In terms of
the online clock time, our model shows superior efficiency to
the mechanics models (FE-ROM and FE2) with about 125×
and 1240× accelerations, respectively. It is noted that we do
not directly perform the FE2 due to its prohibitively demand-
ing costs, its computational time is estimated by comparing
to the ROM on a smaller multiscale simulation whose time
comparison is demonstrated in Fig. 21 of Appendix C. We
also note that, while we perform the training process on two
GPUprocessors, we carry out both the database generation of
the FE-RNN and the multiscale simulations of FE-ROM and
FE2 by paralleling 60 CPU cores with 360 GB RAM on an
HPC. Comparatively, our proposed RNN model only needs
four CPU cores on a desktop computer for the multiscale

computation, providing feasible solutions to the engineers
without accessibility to large computational resources.

We can observe from Table 2 that the generation of train-
ing database is rather computationally expensive. However,
our surrogate model is still more advantageous than the clas-
sic FE2 approach for several reasons: (1) Even though the
offline database generation time (239.5 × 60 CPU hours)
is much longer than the online simulation time of FE-RNN
(0.4 × 4 CPU hours) and FE-ROM (49.8 × 60 CPU hours),
it is still about 1.06 times faster than FE2 (494.0 × 60 CPU
hours). In fact, the reported time for FE2 in Table 2 is an
estimate since we cannot actually run such simulations due
to excessive computer memory requirements which do not
hamper our FE-RNN approach. (2) The training database is
only generated once and the trained surrogate can be used in
futurewithout any additional offline costs. Hence, these costs
are expected to be amortized with the repeated future uses of
the model. For instance, for the mesh independence study in
Sect. 4.3, the trained model is directly used and there is no
need to generate a new data or train a new machine learn-
ing model. Additionally, the macrostructure in Sect. 4.3 is
different from the macrostructure in Sect. 4.2 which again
shows that we can use our trained data-driven constitutive
model across multiple applications. This “transferability”
feature does not exist in FE2: Even for the same macroscale
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Fig. 17 Multiscale model of
double-notched specimen: a
Every macroscale integration
point is associated with a
microscale porous RVE; and b
Convergence study of the
softening load–displacement
curves with different macro
discretization levels

model, if the distribution of the porosity changes (e.g., some
macroscale IPs have no pores while some other IPs are asso-
ciated with a microstructure which has pores), FE2 needs to
be rerunwhich is very expensive.With our approach, we only
need to rerun the online macroscale simulation whose cost
is be much lower.

We point out that themain purpose of this L-shape bracket
study is to verify the accuracy of our multiscale surrogate by
comparing it to the FE-ROMbenchmark (we do not intend to
use a finer mesh to study mesh convergence of damage anal-
ysis in this example). As shown in Table2, the computational
time of the benchmark for this relatively coarsemesh is about
49.8×60 CPU hours (2.1 days) on a high-performance com-
puter by paralleling 60CPUs. This computational timewould
be significantly higher (exceeding our computing budget) if
we choose a much finer mesh. For the mesh convergence
study of damage modeling, we compare post-failure behav-
iors of multiscale damage models with much finer mesh
discretization in Sect. 4.3.

4.3 Multiscale Damage Surrogate: Mesh
Independence Study

One of the major challenges of using continuum mechanics
to simulate softening is preventing the fracture bands from
residing in single-element-wide layers. A popular solution
to this challenge is to apply non-local functions to constrain
damage patterns to different spatial discretization levels. To
this end, we apply the proposed RNN model to a new 3D
model in this section and assess its robustness in predicting
damage behavior while changing the mesh size.

The geometry, dimensions, and boundary conditions of
the double notched specimen are demonstrated in Fig. 17a.
The left surface of the specimen is fixed and its right surface
is extended by d = 0.6 mm along the x-axis. In this experi-
ment, we model the entire specimen as a multiscale structure
where eachmacro IP is associatedwith a porousRVE. For the
mesh convergence study, we discretize the macro specimen

with three different mesh sizes: a coarse mesh with 7, 000
elements, a medium mesh with 18, 000 elements, and a fine
mesh with 28, 000 elements.

We demonstrate the reaction force-displacement curves in
Fig. 17b which indicates that the three mesh levels achieve
very close elasto-plastic hardening responses and are slightly
different in the softening regime. Specifically, we note that as
themesh level increases frommedium to fine, the post-failure
force-displacement responses tend to converge.

We also probe the convergence by inspecting the stress
distributions and damage patterns, see Fig. 18. In Fig. 18a
and b, we can clearly see that at all mesh levels the dam-
age initiates from the inner circular surfaces and propagates
across the specimen as it deforms. The influence of impos-
ing non-local function is evident: it not only successfully
avoids non-physical single-element-wide damage layers, but
also constrains the fracture bandwidth regardless of the mesh
sizes. Additionally, as indicated in Fig. 18a stress concentra-
tions consistently appear at both fracture front tips and around
sharp corners.

We report the simulation time of this multiscale double
notched specimen in Table 3. We emphasize that due to the
superior efficiency, we can apply our trained FE-RNN to
any multiscale models with no extra costs of data genera-
tion and model training. Additionally, our trained FE-RNN
model is memory-light and can be run on a desktop with four
CPU cores and 16GB RAM. Based on the time comparison
in Table 2, simulation of the multiscale model with 28,000
elements requires a clock time of 1,304.8h (54.4 days) and
12,942.8h (539.3 days) by paralleling 60 CPU cores with
360 GB RAM by FE-ROM and FE2 methods, respectively.

5 Conclusions

We propose a physics-constrained deep learning model that
surrogates the homogenized path-dependent microstructural
behaviors in 3D large-scale multiscale simulations. Our
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Fig. 18 Mesh convergence study of field variables by our FE-RNN: With the increase of the number of macro-elements in (a), both the damage
patterns in (b) and stress distributions in (c) show convergence

Table 3 Computational time of the double notched model: The multi-
scale simulations of the double notched specimen are performed by the
proposed FE-RNN model on a modest desktop with four CPU cores
where the computational costs of one-time data generation and model
training are reported in Table 2

Number of macro-elements Multiscale simulation time

7, 000 3.1 × 4 CPU-hour

18, 000 7.5 × 4 CPU-hour

28, 000 10.5 × 4 CPU-hour

deep learning model is an RNN trained on a database
that is generated by efficiently sampling deformation path

spaces (spanned by strains) and obtaining the corresponding
microstructural responses via a physics-based reduced-order
model. To reduce the reliance on expensive data while
increasing accuracy, we leverage two constraintswhile build-
ing our RNN. The first constraint is based on our energy
analysis on thermodynamic consistency of microstructural
deformation and we implement this constraint by adding
a penalty term to our RNN’s loss function. The second
constraint draws inspiration from the irreversible nature of
damage processes and we implement it as a hard constraint
by directlymanipulating the temporal variation of the outputs
within the RNN architecture. In addition, we incorporate the
teacher forcing technique into our RNN model and demon-
strate its impacts in both single and multiscale simulations.
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We validate the accuracy of our model in both sin-
gle and multiscale simulations that involve path-dependent
deformations with hardening and softening. Importantly, we
show that our model is accurate enough to provide reliable
multiscale simulations with complex and cyclic loadings,
particularly, we can reliably capture softening behaviors such
that the solutions are post-failure convergent and mesh inde-
pendent.

Our experiments reveal that while the costs of database
generation and model training are considerable, these costs
are amortized in online computations. For example, our
data-driven model is about four orders of magnitude faster
than the classic FE2 approach in terms of CPU hours.
Such high efficiency makes our model promising for many
computationally intensive tasks that would require large
computational resources (multi-core CPUs and GPUs) or
need long simulation times.

The main objective of this work is to develop an RNN-
based surrogate to accelerate multiscale damage analysis
for metallic alloys with process-induced porosity. While the
physics-based constraints thatwe use in developing thisRNN
improve its accuracy, the training dataset (generated with
offline microstructural analyses) is the major driving factor
that controls its behavior. That is, if a particular aspect of the
physics is not present (explicitly or implicitly) in the dataset,
our trained model cannot capture it.

Additionally, our surrogate is trained on a synthetic
database which we believe is an important step before
systematically incorporating experimental data (which are
typically small) in a machine learning model. We plan to
investigate the combination of synthetic and experimental
data as they complement each other.

We also plan to extend our work in a number of dif-
ferent directions. First, minimization of inference error is
critical especially for iterative solvers.While teacher-forcing
is beneficial in single scale simulation, we are interested
in leveraging this mechanism for online iterative multiscale
computations where ground truth values are not available
(simply adding noise during training does not seem to help
based on our studies). Second, we plan to study the impacts
of spatially varying material properties and microstruc-
tural morphology on the behaviors of macro components.
However, adding such variations dramatically increases the
dimension of sampling space and, in turn, the number of
data points required for effective training. To reduce sam-
pling costs in such scenarios, adaptive sampling strategies
[61] for sequence learners or mechanistic neural networks
that systematically couple data science with principles of
mechanics [62, 63] need to be investigated. Lastly, we plan
to make our model probabilistic for outer-loop applications
such as uncertainty quantification [64] andmaterial/structure
design optimization [62, 65–68].
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Appendices

AMultiscale ContinuumDamageModel

There are two popular approaches for modeling damage [69,
70]: (1) a discrete approach based on fracture mechanics
which models displacement discontinuity at discontinuous
interfaces, and (2) a continuous approach based on contin-
uum mechanics which models damage as strain softening by
inelastic strains. In our work, we adopt the latter approach to
generate a database ofmicrostructural responses. The contin-
uous approach, however, often suffers from non-objectivity
where localized damage bands become narrower and nar-
rower upon mesh refinement, i.e., they are mesh dependent
(this dependency is caused by ill-posed governing equations
due to damage-induced non-positive definiteness). One way
to address this issue is to modify the continuum constitutive
law by introducing crack bandwidth via nonlocal functions.

However, integrating nonlocal functions within a mul-
tiscale damage model is quite difficult [18, 60]. This is
because, on the one hand, a material characteristic length lm
is needed to stabilize ill-posed governing equations (caused
by non-positive definite stiffness matrix) to address the mesh
dependency at microscale. On the other hand, a macroscale
characteristic length lM is required to provide nonlocality
for distant macro elements. Simultaneously imposing lm and
lM helps to stabilize the multiscale damage model but is not
physically realistic. If only lm is imposed and lM is neglected,
the multiscale model merely transfers the damage-induced
localization to the finer scale which is equivalent to a single
scale model with lm and contradicts with the purpose of mul-
tiscale modeling without properly transmitting microscale
damage to macroscale [60].

One way to properly impose nonlocal functions in multi-
scale damage models is to introduce a material characteristic
length in each RVE that accounts for the influence of dam-
age on neighboring RVEs (and associated macro elements)
[71]. We adopt another approach to properly impose both
the micro and macro damage regularizations [26]: our micro
damage model is regularized by a predefined material frac-
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ture energy and its resulting effective damage parameter is
subsequently regularized by a macro damage model via a
nonlocal function for neighboring RVEs. We provide more
details on our approach below.

We adopt an continuum damage model to simulate strain
softening in ductile metals whose load-carrying capacity
drops due to the degradation of yield stress and stiffness. To
simulate the onset of softening, we choose ductile damage
initiation criteria whichmodels the effective strain at damage
initiation, i.e., Ē pl

d , as a function of stress and strain states.

We presume Ē pl
d is a constant and that damage begins when

the equivalent plastic strain is equal or greater than it, i.e.,
Ē pl ≥ Ē pl

d .
A major challenge of continuum damage models is the

softening-induced non-positive definite stiffness matrix that
results in slow solution convergence and negative wave
speeds [60]. Specifically, the ill-posed problem causes equi-
librium equations to lose objectivity with respect to mesh
sizes by exhibiting spurious mesh sensitivity. In microstruc-
tural simulations, to address the lack of objectivity to mesh
choices, we convert the stress–strain relation in the constitu-
tive equation to a stress-displacement relation to formulate
the micro-damage evolution after damage initiation as:

G f =
∫ Ē pl

f

Ē pl
0

leSy d Ē
pl =

∫ ū pl
f

0
Sy dū

pl (A-1)

where le indicates the element’s characteristic length in an
arbitrary RVE, and G f represents the dissipated energy that
opens a unit area of crack after damage initiation. The equiv-
alent plastic displacement ū pl is the fracture work conjugate
to the yield stress Sy from the onset of damage (with the effec-

tive plastic strain Ē pl
0 and zero plastic displacement ū pl ) until

the final failure (with the effective fracture strain Ē pl
f and the

fracture displacement ū pl
f ). Using Equation (A-1) we define

the microscale damage evolution based on an exponential
form of the released energy [72] as:

Dm = 1 − exp

(
− 1

G f

∫ ū pl
f

0
Sy dū

pl

)
(A-2)

where Dm represents the microscale damage parameter that
monotonically increases in the range of [0.0, 1.0]. We note
that in our context of isotropic continuum damage, Dm is a
scalar and it becomes a tensor in anisotropic damage models.
In addition, we note that Dm approaches 1.0 asymptotically
with infinitely large ū pl in Equation (A-2). In practice, we
set Dm as 1.0 when the dissipated energy exceeds 0.99G f .
In our continuum damage model, we formulate a softening
response of a micro point with an elasto-plastic behavior as:

Sm = (1 − Dm)S0m; S0m = C
el : Eel

m = C
el : (Em − E pl

m )

(A-3)

where Sm and S0m are, respectively, the damaged stress and
the reference stress that undergoes the same deformation path
but in the absence of damage at a micro material point. Cel

represents the fourth-order elasticity tensor. Em , Eel
m and

E pl
m are the microscale total strain, elastic strain, and plastic

strain, respectively.
From the microscale stress, we can compute the effective

stress via Equation (2). Additionally, we compute the RVE’s
effective damage parameter [71] by:

DM = 1 − ‖SM : S0M‖
‖S0M : S0M‖ (A-4)

where the homogenized damage parameter DM indicates the
damage status of the RVE. Its value depends on the values of
the effective stress SM and the effective reference stress S0M
without damage; thus, it is clear that the effective damage
parameter is not a function of homogenized plastic strains.

We proceed to constrain the effective damage parameter
DM via an integral-type non-local damage model to mitigate
the spurious mesh dependency on the macroscale as:

D̂M (P, P ′) =
∫
B

ω(‖P − P ′‖)DM (P ′) d P ′ (A-5)

where D̂M (P, P ′) is the non-local damage parameter at the
macroscopic point P surrounded by points P ′ in the com-
pact neighborhood B. DM (P ′) represents the local damage
parameter at P ′ andω indicates the non-localweighting func-
tion which depends on the distance ‖P − P ′‖ between the
studiedpoint and its supportingpoints. In thiswork,wedefine
ω by a polynomial bell-shape function as:

ω(‖P − P ′‖) = ω∞(‖P − P ′‖)∫
B ω∞(‖P − P ′‖) d P ′ (A-6a)

ω∞(‖P − P ′‖) =
〈
1 − 4(‖P − P ′‖)2

l2d

〉2
(A-6b)

where 〈. . . 〉 is the Macauley bracket defined as 〈x〉 =
max(0, x), ld denotes the strain localization bandwidth
whose value represents the non-local interacting radius, and
the support domain B is a sphere with a radius of ld/2 in 3D
models.

In our multiscale damage model, we compute the regular-
ized macro stress, S, as:

S = (1 − D̂M )S0M (A-7)

where we assume the effective reference stress S0M can be
closely approximated by the effective damaged stress (SM )
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and the effective damage parameter (DM ) from microstruc-
tural analyses. That is:

S0M = SM/(1 − DM ) (A-8)

We can directly relate S to the RVEs’ effective damaged
stress (SM ) via S = SM (1 − D̂M )/(1 − DM ). These two
stresses are identical if there are nomacro nonlocal functions,
i.e., D̂M = DM . However, as discussed before, it is impor-
tant to properly impose damage regularization on each scale
to address the mesh dependency issue of continuum damage
mechanics [18, 60]. In our model, we regularize micro dam-
age by material fracture energy in Equation (A-2) and macro
damage by nonlocal functions in Equation (A-5). Hence, the
two stresses (S and SM ) in our case are directly related via a
coefficient of (1 − D̂M )/(1 − DM ).

We now demonstrate that the relation in Equation (A-8)
is directly related to the definition of the effective damage
parameter in Equation (A-4):

SM = (1 − DM )S0M (A-9a)

SM : S0M = (1 − DM )S0M : S0M (A-9b)

(SM : S0M )/(S0M : S0M )=(1−DM )(S0M : S0M )/(S0M : S0M )

(A-9c)

(SM : S0M )/(S0M : S0M ) = (1 − DM ) (A-9d)

where we can obtain the definition of the effective damage
parameter as in Equation (A-4) since 0 ≤ 1 − DM ≤ 1.

B Hybrid Constitutive Integration

The non-positive definiteness of the stiffness matrix is the
primary reason for the slow convergence of classic implicit
time integration schemes that are used in continuum damage
simulations. For illustration, consider the constitutive equa-
tion of an isotropic damage model integrated by an implicit
backward-Euler integration scheme. Its algorithmic tangent
operator at an arbitrary macroscopic IP can be written as:

C
alg
n+1 = ∂Sn+1

∂En+1
= (1 − Dn+1)C

el

− Sn+1 − Hn Ē
pl
n+1

(Ē pl
n+1)

3
S0n+1 ⊗ S0n+1 (B-1)

where Calg
n+1, Ē

pl
n+1, Sn+1, S0n+1 and Hn represent the fourth-

order algorithmic tangent operator, equivalent plastic strain,
equivalent stress, referenced stress tensor, and softening
modulus, respectively. The subscripts denote time steps and
the symbol ⊗ represents the cross product between ten-
sors. Softening causes negative values for Hn which can

render C
alg
n+1 indefinite. A non-positive C

alg
n+1 leads to an

ill-conditioned elemental stiffness matrix with near-zero or
negative eigenvalues, and further deteriorates the global
stiffness matrix in the element assembly process. Such ill-
posed matrices dramatically reduce the efficiency of iterative
solvers (e.g., Newton–Raphsonmethods) and often cause job
abortion before final convergence.

To fundamentally resolve the convergence issue, we adopt
a hybrid time integration scheme [26, 73] to integrate the gov-
erning equations of elasto-plastic and softening equations
explicitly-implicitly. The basic idea of the hybrid integration
is to maintain the positive definiteness of the system’s alge-
braic tangent operator by separately integrating constitutive
equations in two consecutive stages via explicit and implicit
schemes. At the first stage, we explicitly extrapolate inter-
nal material state variables at time step n + 1 from step n to
compute the explicit stress state S̃n+1 that balances the equi-
librium equation between internal and external forces. At
the second stage, we compute the implicit stress state Sn+1

based on the current strain state En+1 using the classic back-
ward Euler method to update the trial stress tensor and yield
functions for the next time step where the tangent operator
between S̃n+1 and En+1 is kept positive definite.

For the elasto-plastic model, we choose the material state

variable as the incremental plastic strain tensor �Ẽ
pl
n+1 such

that S̃n+1 can be computed as:

S̃n+1(�Ẽ
pl
n+1) = S̃

tr ial
n+1 − C

el : �Ẽ
pl
n+1 = C

el : En+1

−C
el : E pl

n − C
el : �Ẽ

pl
n+1

�Ẽ
pl
n+1 = �tn+1

�tn
�E pl

n (B-2)

where E pl
n represents the implicit incremental plastic strain

tensor at time step n, �tn and �tn+1 indicate the lengths of
time steps at two consecutive steps. The algorithmic tangent
operator (under loading5) is therefore computed as:

C̃
alg
n+1 = ∂ S̃n+1(�Ẽ

pl
n+1)

∂En+1

= ∂(Cel : En+1 − C
el : E pl

n − C
el : �Ẽ

pl
n+1)

∂En+1
= C

el

(B-3)

In a similar manner, for isotropic continuum damage
models, we choose the explicitly interpolated material state
variable in the hybrid integration as the incremental plastic
multiplier �λ̃n+1, i.e., �λ̃n+1 = (�tn+1/�tn)�λn . We can
thenwrite its explicit damaged stress and algorithmic tangent

5
C̃
alg
n+1 is equal to the elastic modulus in unloading.
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operator (under loading6) as:

S̃n+1 = (1 − D̃n+1)S0n+1 = (1 − D̃n+1)C
el : En+1;

D̃n+1 = D̃n+1(Dn,�λ̃n+1) (B-4)

C̃
alg
n+1 = ∂ S̃n+1

∂En+1
= (1 − D̃n+1)C

el (B-5)

where S0n+1 is the effective stress tensor, and D̃n+1 represents
the explicit state of the damage variable which is a function
of its previous implicit state Dn and the current explicit incre-
mental plastic multiplier �λ̃n+1.

In the hybrid integration scheme, the loading tangent oper-
ators of the elasto-plastic model in Equation (B-3) and the
damage model in Equation (B-5) are trivially equal to the
elastic modulus Cel and (1 − D̃n+1)C

el . Hence, the hybrid
integration scheme preserves the positive-definiteness of the
governing equations and also allows to assemble the global
stiffness matrix only once before online simulations. The
global stiffness matrix remains constant for the elasto-plastic
regime and only needs partial updates on matrix entries asso-
ciated with the softening IPs by Equation (B-5). As softening
is often highly localized in small regions, the global stiffness
can be incrementally updated during the entire elasto-plastic-
hardening-softening process [26]; saving significantmemory
footprints with robust convergence performance.

C Deflated Clustering Analysis

Simulation of microstructural softening via the classic FE2

method involves demanding computational costs, which is
prohibitive for generating big training data formachine learn-
ing models. To accelerate the database generation, we adopt
our previously developed mechanistic ROM, i.e., deflated
clustering analysis (DCA) [25, 26]. Its high efficiency comes
from two facts: (1) the number of unknown variables in the
system is dramatically reduced from a large number of finite
elements to a few clusters by agglomerating elements via
clustering as shown in Fig. 23, and (2) the algebraic equations
of the reduced system contains much fewer close-to-zero
eigenvalues that results in better convergence comparing to
the classic FE system.

Our DCA utilizes k-means clustering, i.e., an unsuper-
vised machine learning technique for data interpretation and
grouping, to agglomerate neighboring elements into a set
of interactive irregular-shape clusters. The clustering begins
with feeding the coordinates of element centroids into a fea-
ture space where randomly scattered cluster seeds serve as
initial cluster means. Clusters accept or reject elements by
iteratively minimizing the within-cluster variance until all

6
C̃
alg
n+1 = (1 − D̃n+1)C

el in unloading.

Fig. 19 Demonstration of clustering in ROM: The domain of a
generic 2D RVE with 5, 000 elements in (a) are decomposed into 100
clusters in (b) where elements in the same cluster are assigned with the
same color

elements are assigned to a cluster. The clustering procedure
can be mathematically stated as a minimization problem as:

C = min
C

k∑
I=1

∑
n∈C I

‖ϕϕϕn − ϕ̄ϕϕ I‖2 (C-1)

whereC represents the k clusterswithC = {C1,C2, . . . ,Ck}.
ϕϕϕn and ϕ̄ϕϕ I indicate the coordinates of the centroid of the n

th

element and the mean of the coordinates of the I th cluster,
respectively. A clustering example is illustrated in Fig. 23
where the discrete domain of a 2D generic RVE with 5, 000
elements is decomposed into 100 clusters.

We construct clustering-based reducedmesh viaDelaunay
triangularization by connecting cluster centroids where the
topological relations between clusters are preserved from the
original FE mesh. By assuming the motions of cluster cen-
troids are directly related to clustering nodes,we can compute
the nodal displacements via polynomial augmented radian
point interpolation [74] as:

uc = Ra + Zb (C-2)

where uc represents the displacements of cluster centroids. a
is the coefficient vector of the radial basis function matrix R,
and b is the coefficient vector of the polynomial basis matrix
Z.Meanwhile, the radial coefficient and the polynomial basis
need to satisfy the following equation for every node per clus-
ter and every polynomial basis function to ensure solution
uniqueness [74] as:

Za = 0 (C-3)

Thedisplacements of cluster centroids are augmentedwith
rotational degrees of freedom to represent the six rigid body
motions in a 3D deflation space [75], including three transla-
tions and three rotations. Upon the completion of a non-linear
analysis on the reducedmesh, the displacement solutions can
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Fig. 20 Multiscale cube model:
a Every integration point of the
macro-cube model is associated
with a porous RVE; and b The
RVE domain is discretized by
different numbers of clusters

be projected back to the original FE mesh by:

u j
i = W j

i λλλ j (C-4)

where u j
i represents the displacement vector at the i th node

in the j th cluster. In addition, λλλ j is the rigid body motion

of the centroid of the j th cluster, while the W j
i indicates the

deflation matrix for the i th node in the j th cluster as:

λλλ j = [u jx , u jy, u jz, θ j x , θ j y, θ j z]T ;

W j
i =

⎡
⎢⎣
1 0 0 0 z ji −y j

i

0 1 0 −z ji 0 x j
i

0 0 1 y j
i −x j

i 0

⎤
⎥⎦ (C-5)

where u jx and θ j x are the displacement and rotation of the

j th cluster along x axis, and the (x j
i , y

j
i , z

j
i ) are the relative

3D coordinates of the i th node with respect to the centroid of

the j th cluster. By assuming all elements in the same cluster
share identical stress and strain fields, microstructural effec-
tive responses can be reproduced in a highly efficient manner
such that the unknown variables are dramatically decreased
from FE system that accounts for distinct field variables per
element to the reduced systemwithmuch fewer distinct solu-
tions per cluster.

To demonstrate the efficacy of our DCA, we compare its
simulation results on a 3Dmultiscale cube against the classic
FE2 method in Fig. 20. The macro-cube is fully constrained
at its bottom surface, and it is subject to an upward extension
on the top surface with d = 7 mm. The cube is meshed
with 12 tetrahedral elements of reduced-integration (one IP
at the center of each tetrahedron). We assume each macro-
IP is associated with the same porous RVE containing one
spherical pore in the middle as shown in Fig. 20a.
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Fig. 21 Results of the multiscale cube model: a Comparison of the softening load–displacement curves between FE2 and FE-ROM with different
clusters; and b Comparison of computational time

To determine the number of clusters for a given problem
(for any clustering-based ROM, e.g., DCA, SCA, or SCA’s
variants), we can perform a quick preliminary convergence
studywherewe gradually increase the number of clusters and
determine the minimum number of clusters above which the
results insignificantly change. This convergence study can
also be done by comparing the results of the ROM to that of
direction numerical solutions (DNS). Yet another method is
to formulate a data-driven inverse optimization problem [59]
where the cluster number is considered as an optimization
variable. In this work, we carry out a convergence study to
ensure our ROM’s solutions do not change as the number of
clusters increase and that they are consistent with the DNS,
i.e., FE2. Specifically, we apply four clustering levels (k) of
400, 800, 1, 200 and 1, 600 to an RVE meshed with 15, 000
elements and investigate the effects of k on the RVE’s effec-
tive softening behaviors, see Fig. 20.

We compare the reaction force-displacement curves from
FE2 and FE-ROM in Fig. 21a. By considering the FE2

solutions as the benchmark, we observe that: (1) the FE-
ROM solutions with k = 400 slightly overestimate the
component’s strength as insufficient clustering in the RVE
artificially strengthens the material [23, 25]; and (2) as k
increases, the FE-ROMresponses (especially the post-failure
behaviors) become closer and closer to the benchmark.
Specifically, we observe that when k increases to 1, 200 and
1, 600, FE-ROMs achieve sufficiently accurate results com-
pared to FE2.

We compare the computational costs of the different
solvers in Fig. 21b. While all experiments are performed on
an HPC by paralleling 60 CPU cores with 360 GB RAM,
the clock time of FE2 is the longest (about 24.9 hours). The
clock time of the ROM with 1, 200 and 1, 600 clusters is
about 2.5 and 3.2 hours, resulting in the acceleration fac-

tors of 9.9 and 7.8, respectively. Considering the fact that the
ROMwith k = 1, 200 is about 28% faster than its counterpart
with k = 1, 600 while achieving similar accuracy, we adopt
k = 1, 200 while building the training dataset in Sect. 4.

For efficient generation of (micro)structure-performance
datasets, we note that many other ROMs can also be used
for porous microstructural analyses. For example, self-
consistent analysis (SCA) [23, 76, 77] and virtual clustering
analysis (VCA) [24] can achieve highly efficient and accu-
ratemicrostructural homogenization results by treating pores
as a soft material with the 0.1% modulus of matrix materi-
als [78]. Another method is the FEM-cluster-based analysis
(FCA) [79] where the Hill-Mandel theorem is replaced with
the energy equivalence theorem without filling pores with
reference material properties. As our focus in this paper is
on building the deep learning model that can faithfully sur-
rogate microstructural analyses, we use our in-house DCA
package and plan to leverage other methods such as SCA in
our future works.

DGated Recurrent Unit

To alleviate vanishing and exploding gradient issues ofRNNs
in processing long sequential data, long short term memory
(LSTM) and gated recurrent unit (GRU) are typically used.
GRU is a variant of the LSTM that, while providing similar
accuracy, is more parsimonious and hence computationally
more efficient. It is for this reason that we choose GRU as the
memory cell in our proposed RNN architecture as in Fig. 4.

To demonstrate the working mechanism of GRUs, we
three interconnected cells of a GRU layer in Fig. 22. In a
GRU layer, a typical cell at an arbitrary time step t generates
predictions ŷt and internal memory-like hidden variables ht
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Fig. 22 Architectures of GRU
layer and cells: The internal
structure and mathematical
operations are demonstrated in
the GRU cell at time step t

Fig. 23 Experimental characterization of our aluminum alloy A356: a A356 ingots are melted in a high-temperature furnace with degassing
to remove porosity; b Heat treatment of cast tensile bars; c Composition analysis; and d Tensile tests of the cast alloys

after reading in the current inputs xt and the hidden variables
ht−1 from the previous cell. Compared to the RNN cell in
Fig. 3b, the GRU cell uses reset and update gates to regulate
its internal information flow. The reset gate r t reads xt and
ht−1 to determine the candidate hidden state ĥt by filtering
out less important information passing from the previous cell.
Its operations include:

r t = σ (Whrht−1 + W xr xt + br ) (D-1a)

h̃t = tanh
(
r t � Whh̃ht−1 + W xh̃xt + bh̃

)
(D-1b)

whereσ is the sigmoid activation function that returns a value
in the range of [0, 1], tanh is the hyperbolic tangent function,
and � represents the Hadamard product. Whr , W xr , Whh̃ ,
W xh̃ are theweightmatrices associatedwith the hidden state,
the input state, the hidden-to-candidate hidden state and the
input-to-candidate hidden state, respectively. br and bh̃ are
the biases applied to the sigmoid function in the reset gate
and the hyperbolic tangent function, respectively.

The update gate (which has its weights and biases) sim-
ilarly operates on xt and ht−1: it linearly interpolates the
previous hidden state ht−1 and the candidate hidden state
h̃t to update the memory-like hidden state ht which is then

passed to the next cell:

ut = σ (Whuht−1 + W xuxt + bu) (D-2a)

ht = ut � ht−1 + (1 − ut ) � h̃t + bh (D-2b)

whereWhu andW xu are the weights applied onto the hidden
state and input state in the update gate. bu and bh are the two
biases associated to the sigmoid function and the generation
of the current hidden state. The cell output at the current time
step ŷt is then obtained by linearly transforming the hidden
state:

ŷt = Whyht + by (D-3)

whereWhy and by are the weights and biases associated with
the current output state ŷt . We note that all the weights and
biases of the GRU networks are iteratively updated by BPTT
during training.

E Experimental Material Characterization

For the microstructural simulations in Appendix C we
assume the microstructure only contains porosity and the
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matrix material (i.e., aluminum alloy A356). So, in this sec-
tion, we briefly discuss the experimental characterization
process that can be used to obtain the effective elastoplas-
tic and damage properties of the matrix material, see Fig. 23.
Our experiment consists of several steps. In the first step,
we melt aluminum A356 ingots in a furnace which is pre-
heated to about 800◦ C.During themelting process, we apply
degassing [80] to remove gases (e.g., hydrogen contents) and
gas-induced porosity before casting as tensile coupons. In the
second step,we apply a standardT6heat treatment to improve
the A356 alloy’s strength and toughness. The heat treatment
involves a high temperature treatment at 540◦ C for 8 hours to
dissolve alloy elements into aluminum matrix, a quenching
process to freeze alloy elementswithin the solid solution, and
an artificial aging process at about 155◦ C for 3.5 hours to
precipitate alloy elements and form grain structures. We also
perform composition analysis and find that our A356 alloy
contains about 92.05% aluminum (weight fraction), 6.72%
silicon, 0.09% steel, 0.0028% magnesium, and other alloy
elements. In the third step, we use X-ray computed tomogra-
phy (CT) to inspect the porosity defect in tensile coupons to
ensure the cast alloy is free of pores. Finally, we perform the
tensile test on the tensile coupons andmeasure their averaged
elastoplastic and damage parameters (which are provided in
Sect. 4.1).
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