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Abstract 1 

The objective of this paper is to introduce and demonstrate a 

robust methodology for solving multi-constrained 3D topology 

optimization problems. The proposed methodology is a 

combination of the topological level-set formulation, augmented 

Lagrangian algorithm, and assembly-free deflated finite element 

analysis (FEA).  

The salient features of the proposed method include: (1) it exploits 

the topological sensitivity fields that can be derived for a variety 

of constraints, (2) it rests on well-established augmented 

Lagrangian formulation to solve constrained problems, and (3) it 

overcomes the computational challenges by employing assembly-

free deflated FEA. The proposed method is illustrated through 

several 3D numerical experiments. 

1. INTRODUCTION 

Over the last two decades, topology optimization (TO) [1] has 

accelerated from an academic exercise into an exciting discipline 

with, potentially, numerous industrial applications. The focus of 

this paper is specifically on constrained TO where several 

performance and manufacturing constraints must be considered 

during optimization.  

In structural mechanics, a constrained TO problem may be posed 

as (see Figure 1): 
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where: 
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Figure 1: A single-load structural problem.  

Various methods have been proposed to solve specific instances of 

Equation (1.1); these are reviewed in Section 2.  For example, a 
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special case of Equation (1.1) is the compliance-constrained 

volume minimization problem: 
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J J
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 (1.3) 

where: 

 
:  Compliance

:  Compliance allowableall

J

J
 (1.4) 

Figure 2 illustrates the solution to a specific instance of Equation 

(1.3), where the allowable compliance is 60% larger than the 

initial compliance. 

 

Figure 2: Optimal topology for a specific instance of Equation 

(1.3) over the structure in Figure 1.  

In practice, additional constraints including stress, buckling, 

Eigen-value, and manufacturing constraints must be taken into 

account. The objective of this paper is to develop a unified method 

that can solve such multi-constrained TO problems. The proposed 

method and its implementation are discussed in Section 3. In 

Section 4, numerical experiments are presented, followed by 

conclusions in Section 5. 

2. LITERATURE REVIEW 

2.1 Constrained Topology Optimization  

To solve a constrained TO problem, a TO formulation and a 

constrained optimization algorithm must be chosen.  

Various TO formulations including homogenization [2], Solid 

Isotropic Material with Penalization (SIMP) [3] and level-set [4], 

[5], have been proposed. Constrained optimization algorithms, on 

the other hand, include method of moving asymptotes (MMA) [6], 

optimality criteria (OC) [7], simplex method [8], interior point 

method [9], Lagrangian multiplier method [9], augmented 

Lagrangian method [9] and so on.  

We review below various combinations of TO formulations and 

optimization algorithms that have been proposed. Table 1 provides 

a chronological summary of relevant literature. The table and the 

review that follows are representative but not exhaustive; for 

example, constrained ground structures methods [10], [11], [12] 

are not reviewed here. 

SIMP Based Methods 

SIMP is perhaps the most popular TO formulation due to its 

simplicity, generality and success in several applications [13]. 

Based on the finite element method (FEM), SIMP assigns each 
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element with a pseudo-density, and the pseudo-densities are then 

optimized to meet the desired objective [14].  

Initially, SIMP was employed to solve compliance minimization 

problems [14]; it then evolved to include constraints. For example, 

one of the earliest SIMP-based stress-constrained TO 

implementation was reported in [15] where authors coalesced 

local stress constraints into a global stress constraint, and 

addressed instability issues via a weighted combination of 

compliance and global stress constraints. Further research on 

compliance and stress-constrained SIMP-based TO are discussed 

in [13], [16], [17], [18] and [19]. 

In [20], the authors proposed a SIMP-based trust-region method 

combined with augmented Lagrangian to solve a TO problem of 

continuum structures subject to failure constraints. In [21], a 

Heaviside design parameterization was used in SIMP to consider 

manufacturing constraints. The authors in [22] implemented SIMP 

with MMA to solve a TO problem with compliance and 

manufacturing constraints. In [23], using SIMP, a manufacturing 

constraint and a unilateral contact constraint were absorbed into 

compliance minimization formulation through augmented 

Lagrangian method. In [24], the authors used a modified SIMP 

formulation coupled with quadratic programming technique to 

minimize structural weight subject to multiple displacement 

constraints. The authors in [25] used MMA to solve a topology 

optimization problem with a probability-based high-cycle fatigue 

constraint. In [26], an algorithm was proposed to address multi-

scale topology optimization problems subject to multiple material 

design constraints. In [27], a multi-point approximation algorithm 

was used as optimizer in a continuum structure topology 

optimization problem subject to dynamic constraints.  

ESO/BESO Based Methods 

ESO [28] is an alternate TO formulation where finite elements are 

gradually removed during each iteration. BESO [29] addresses 

some of the limitations of ESO by permitting the insertion of 

elements. 

In [30], a principal-stress based ESO method was proposed to find 

the optimal design of cable-supported bridges subject to 

displacement and frequency constraints. During each optimization 

iteration, based on a threshold, elements were removed from the 

design domain. A similar method was used in [31] to solve contact 

design problems, where the authors proposed the interfacial gap 

between components be treated as optimization variables, while 

the contact stress be treated as an objective function. In [32], the 

Lagrangian multiplier method was used with BESO to combine 

the objective function of structural stiffness with a local 

displacement constraint. In [33], a modified BESO method was 

combined with optimality criteria to solve a topology optimization 

problem with natural frequency constraints. The authors argued 

this method can successfully avoid artificial local modes. 

Level-Set Based Methods 

Level-set formulation is gaining popularity in TO since it permits 

an unambiguous description of the boundary, and therefore 

permits imposition of constraints on the boundary. The level-set 

formulation relies on an evolving level-set which is typically 

controlled via Hamilton-Jacobi equations [34]. Readers are 

referred to [34] for a recent review of the success of level-set 

based methods in structural TO. 

In [35], X-FEM based level-set and OC method were combined to 

find optimal designs for continuum structures with geometric 

constraints. In [36], a topological level-set method was coupled 

with an adapted weight method for solving stress-constrained 

compliance minimization problem. In [37], the authors combined 

classic shape derivative and level set method for front 

propagation; the Lagrangian multiplier technique was used for 

perimeter-control. Since there was no implemented mechanism for 

creation of holes, the final design was dependent on initial 

material layout. In [38], the augmented Lagrangian technique was 

combined with the topological sensitivity based level-set method 

to handle displacement, stress and compliance constraints.  

In [39], level-set/X-FEM combined with a shape equilibrium 

constraint strategy was proposed. Specifically, a TO problem with 

stress constraint was formulated through Lagrangian multiplier 

method which was then iteratively solved. In [40], a level-set 

based method was derived to handle casting constraints; 

augmented Lagrangian method was applied for posing the 

constraints and calculating the shape derivative of objective 

function. In [41], a level-set based method was applied to the 

representative wing box of NASA Common Research Model to 

find the optimal 3-D aircraft wing structures. Compliance was 

minimized while balancing the aerodynamic lift and total weight. 

The level-set was shown to be robust and efficient by finding 

optimum solutions for multiple aerodynamic and body force load 

cases.  

2.2 Proposed Method 

From the above literature review, and from Table 1, one can 

conclude that significant progress has been made in recent years 

on constrained TO. Yet, a single method that can handle a variety 

of constraints, especially in 3D, has not been reported.  

In this paper, we extend the 2D method proposed in [38] to 

achieve this goal; the main contributions of this paper are: 

▪ The topological level-set in 3D is combined with the augmented 

Lagrangian method. The 3D computational challenges are 

addressed by exploiting the assembly-free deflated FEA [42]. 

▪ While only displacement and stress constraints were addressed 

in [38], additional buckling and Eigen-value constraints, are 

included here. Inclusion of buckling and Eigen-value 

constraints necessitates the need for soft and hard constraints, 

discussed later in the paper. 

▪ Casting constraints are also addressed in this paper. 

▪ While single-load problems were considered in [38], multiple 

and multi-load problems are considered here. 

3. TECHNICAL BACKGROUND 

In this section, we review several important concepts that 

contribute to the proposed work.  

3.1 Topological Sensitivity 

The proposed constrained TO method relies on the concept of 

topological sensitivity that is defined as the first order sensitivity 

of a quantity of interest with respect to infinitesimal change in 

topology. This was first explored by Eschenauer [43], and later 

extended by many other researchers [44], [45], including its 

generalization to arbitrary features [46], [47]. 
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Table 1: Constrained topology optimization methods.  

Year Authors TOPO form. Opt. solver  Manu. Disp. Comp. Stress Eigen Buck. Dim. 

1987 Svanberg [6] Convex 

approximation  

MMA  √  √ √  2 

1992 Zhou, Rozvany 

[48] 

SIMP OC    √   2 

1996 R. Haber [49] Penalized 

Homogenization 

Interior penalty 

method 

√  √    2 

1997 M. Kocvara [10] Ground structure 
approach 

Interior point 
method 

 √ √    2 

1998 J. Petersson, O. 

Sigmund [50] 

SIMP Linear 

programming  

√  √    2 

2001 L. Yin, et. al. [51] SIMP OC  √  √ √  2 

2002 H. Guan, Y. 

Chen[30] 

ESO Parameterized 

criteria 

 √  √ √  2 

2003 W. Li, Q. Li [31] ESO Parameterized 

criteria 

√      2 

2004 J. Pereira, E. 
Fancello [20] 

SIMP Augmented 
Lagrangian 

   √   2 

2004 G. Allaire, et.al. 

[52] 

Level-set Lagrangian 

multiplier 

√  √    2,3 

2006 K. Zuo, L. Chen 

[22] 

SIMP Modified 

MMA 

√  √    3 

2007 M. Stolpe, T. 

Stidsen [53] 

Hierarchical 

optimization 

Linear 

programming 

 √  √   2 

2008 M. Werme [17] SIMP Linear 
programming 

  √ √   2 

2008 M. Bruggi, P. 

Venini [18] 

SIMP MMA  √ √ √   2 

2009 J. Paris, F. 

Casteleiro [54] 

SIMP Simplex 

method 

  √ √   2,3 

2009 A. Ramani [55] Heuristic Substitution  √ √ √   2,3 

2010 X. Huang, Y Xie 
[32] 

BESO Lagrangian 
multiplier 

 √ √    2 

2010 X. Huang, et. al. 

[33] 

BESO OC     √  2,3 

2010 N. Stromberg [23] SIMP Augmented 

Lagrangian 

√  √    2,3 

2010 S. Yamasaki, T. 

Nomura [56]  

Level-set Augmented 

Lagrangian 

√  √    2,3 

2010 J. Rong, J. Yi [24] SIMP Quadratic 
programming 

 √     2 

2011 A. Gersborg [21]  SIMP MMA √      2 

2012 M. Bruggi, P. 

Duysinx [19] 

SIMP MMA   √ √   2 

2013 T. Liu, S. Wang 

[35] 

Level-set OC √      2 

2013 M. Wang, L. Li 
[39] 

Level-set Lagrangian 
multiplier 

   √   2 

2013 G. Allaire [40] Level-set Augmented 

Lagrangian 

√  √    2,3 

2013 K. Suresh, et.al. 

[36] 

Level-set Adaptive 

weight 

  √ √   2,3 

2014 S. Deng, K. Suresh 

[38] 

Level-set Augmented 

Lagrangian 

 √ √ √   2 

2014 P. Dunning, B. 

Stanford [41] 

Level-set Lagrangian 

multiplier 

  √    3 

2014 E. Holmberg [25] SIMP MMA    √   2 

2015 P. Coelho, H.  

Rodrigues [26] 

SIMP MMA √ √     2,3 

2015 J. Li, et. al. [27] SIMP Multi-point 

Approximation 

    √  3 

Proposed S. Deng, K. Suresh Level-set Augmented 

Lagrangian 

√ √ √ √ √ √ 3 
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To illustrate the concept of topological sensitivity, consider the 2-

D example illustrated earlier in Figure 1. Assume that the quantity 

of interest is Q (example: compliance J ). Suppose an 

infinitesimal hole of radius r is inserted into the domain as 

illustrated in Figure 3, one can expect that this will perturb the 

finite element solution u and the quantity Q. The topological 

sensitivity of Q (i.e., topological derivative) is defined in 2-D as 

[43]: 

20

( )
( ) lim
Q r

Q r Q
p

r
 (3.1) 

 
Figure 3: A topological change. 

Starting from the definition in Equation (3.1), one can derive a 

closed-form expression for the topological sensitivity of 

compliance [57]: 

2

4 1 3
( ) : ( ) ( )

1 1J
p tr tr


   

 

−
= −

+ −
 (3.2) 

where    is the stress tensor, and   is the strain tensor. Observe 

that the topological sensitivity is a field defined at all points within 

the domain. For the problem in Figure 1, the field is illustrated 

(after scaling) in Figure 4. Observe from the definition, and in 

Figure 4, that regions with relatively high values of the field 

correspond to regions of significant importance to the quantity of 

interest. 

 

Figure 4: Compliance topological sensitivity. 

Similar topological sensitivity expressions can be derived for other 

quantities of interest such as the p-norm stress [36]: 




   

 

−
= −

+ − 2

4 1 3
( ) : ( ) ( )

1 1
p tr tr  (3.3) 

where   is the adjoint field associated with the p-norm stress. For 

eigen-value problems, one can show the topological sensitivity 

field of eigen-value is given by [58], [59]: 

( )
22: n np u    = −  (3.4) 

where  is the material density,n
 is the 

thn  eigen-value and 

nu is the corresponding eigen-vector.  

In instances where finding a closed-form expression for the 

topological sensitivity is difficult (for example, buckling), a 

numerical approximation may be obtained via element-sensitivity 

[60]. The sensitivity field of buckling load factor in linear 

buckling analysis can be shown to be [61]:  

( )
= −( ) T e e

P
p u K K u  (3.5) 

where eK  is element stiffness matrix, 


eK  is element geometric 

stiffness matrix,   is the buckling critical load and u  is the 

corresponding buckling mode shape.  

3.2 Topological Level-Set 

One approach to exploiting topological sensitivity in topology 

optimization is to use this field as a guide for introducing holes 

into an auxiliary level-set [37]. An alternate approach proposed in 

[62], [63] is to directly use the topological sensitivity field as a 

level-set; this is the approach taken in this paper.  

Interpreting the field in Figure 4 as a level-set, one can introduce a 

cutting-plane to extract a topology. For example, using a cutting 

plane with an arbitrary value of 0.03 = , Figure 5 illustrates the 

corresponding topology  that is extracted via:  

 { | ( ) }Jp p  =                  (3.6) 

    

Figure 5: Topology extraction from the topological sensitivity 

field.  

However, a naïve use of Equation (3.6) to carry out TO will be 

unstable. Instead the robust algorithm described in [62], [63] is 

employed by tracing the Pareto curve starting from a volume 

fraction of 1.0. For an incremental target volume fraction (say 

0.95), a fixed point iteration method [64] is carried (see Figure 6) 

consisting of three steps: (1) solving the finite element problem 

over the current topology to obtain displacement fields; (2) 

calculating the topological sensitivity, and (3) extracting the new 

topology from topological level-set for the target volume fraction. 

The above three steps are repeated until convergence is reached; in 

practice, 2~4 iterations are sufficient to achieve convergence [62], 

[63]. Once convergence is reached, the target volume fraction is 

decremented (to say, 0.90), and the process is repeated until 

further volume reduction is not possible. 

    

Figure 6: Fixed point iteration involving three quantities 
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3.3 Augmented Lagrangian Method 

We now combine the above TO formulation with augmented 

Lagrangian method to handle constraints. Towards this end, 

consider the classic continuous variable constrained optimization 

problem: 

 
( )

( ) 0; 1,2,...,
x

i

Min f x

g x i m
 (3.7) 

One of the most popular methods for solving such constrained 

optimization problems is the augmented Lagrangian method [9]. 

In this method, the constraints are absorbed into the objective 

function as follows:   

 
1

( , , ) ( ) ( , , )
m

i
i

L x f x L x  (3.8)  

where  

2

2

1
( ) ;           ( ) 0

2( , , )
1

/                    ( ) 0
2

i i i i i i i

i

i i i i i

g g g x
L x

g x
 (3.9) 

 
:  Lagrangian multipliers

:  Penalty parameters
i

i

 (3.10) 

When constraints are active, the augmented Lagrangian is the 

combination of the linear and quadratic terms, else it takes a 

constant value depending on the algorithm parameters. Please see 

[9] for a discussion of the underlying theory.  

The Lagrangian multipliers and penalty parameters are initialized 

to an arbitrary set of positive values. Then the augmented 

Lagrangian in Equation (3.8) is minimized using, for example, 

conjugate gradient method. In every iteration, the Lagrangian 

multipliers are updated as follows: 

 1 ˆmax{ ( ),0}, 1,2,3,...,k k k

i i i i
g x i m  (3.11) 

where the ˆkx is the local minimum at the current k iteration. The 

penalty parameters are updated via: 

1

1
2 1

             min( ,0) min( ,0)

max( , ) min( ,0) min( ,0)

k k k
i i ik

k k ki
i i i

g g

k g g
 (3.12) 

where 0 1  and 0 ; typically 0.25 and 10 [9]. 

Upon updating, the augmented Lagrangian is once again 

minimized, and the process is repeated until termination.  

3.4 Augmented Topological Level-Set 

The goal now is to extend the above augmented Lagrangian 

method to solve the constrained TO problem in Equation (1.1). 

Drawing an analogy between Equations (3.7)  and  (1.1), we 

define the topological augmented Lagrangian as follows: 

 
1

( , ; , ) ( , ; , )
m

i i i i i
i

L u L u  (3.13) 

where 

2

2

1
( )        0

2( , ; , )
1

/                0
2

i i i i i i i

i i i

i i i i i

g g g
L u

g

 (3.14) 

In classic continuous optimization, the gradient of the augmented 

Lagrangian in Equation (3.8), with respect to the continuous 

variable x , is given by: 

  
1

( , , ) ( , , )
m

i
i

L x f L x  (3.15) 

where 

      ( ) 0
( , , )

0                       ( ) 0
i i i i i i i

i
i i i

g g g x
L x

g x
 (3.16) 

Here, the gradient is defined with respect to a topological change. 

Drawing an analogy to the gradient operator in Equation (3.15), 

the topological gradient operator is defined as 

 
1

[ ( , ; , )]
i

m

i i L L
i

L u  (3.17) 

where  is the topological level-set associated with the 

objective, and 

 
     0

0                    0
i

i

i i i g i i i
L

i i i

g g

g
 (3.18) 

where  

 ( )
ig i

g  (3.19) 

are the topological level-sets associated with each of the constraint 

functions. Observe that we have essentially combined various 

topological sensitivities into a single topological level set. The 

multipliers and penalty parameters are updated as described 

earlier, and the complete algorithm is described in a later section. 

3.5 Assembly-Free Deflated Conjugate Gradient Method 

A practical challenge that arises in 3D constrained TO is the 

computational cost. Specifically, for each of the constraints one 

must solve a distinct finite element problem, and compute the 

corresponding topological sensitivity. 

To address the computational cost, we rely here on assembly-free 

methods. Specifically, for solving the static finite element 

problem, we use the assembly-free deflated conjugate gradient 

(AF-DCG) method proposed in [42]. The AF-DCG rests on the 

observation that the computational bottle-neck in modern 

architecture is memory access [65]. AF-DCG computes the 

preconditioner and the solution to the underlying linear system in 

an assembly-free manner, significantly reducing memory 

bandwidth. Similarly, for modal analysis, an assembly-free modal 

analysis proposed in [66] is employed. Finally, for linear buckling 

analysis, the assembly-free extension of this method to buckling 

[67] is used. 

While the above papers address each of the finite element 

problems individually, in this paper, they are effectively combined 

to solve constrained TO problems. 

3.6 Hard and Soft Constraints 

In classic optimization [9], constraints are typically treated as 

‘hard’ constraints, i.e., the algorithm will terminate if any of the 

constraints is violated. In design optimization, this can be too 

restrictive since design constraints may be unreasonable, and the 

algorithm may terminate without any solution. 

Researchers have therefore developed algorithms for handling of 

soft constraints [68]: “Hard constraints limit the feasible space, 

while soft constraints prioritize solutions within this space.” Soft 
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constraints are particularly useful in engineering [69] as an 

alternate to multi-objective problems.  

In this study, we permit hard and soft constraints; for example: 

 
1

2

( , ) 0

( , ) 0   (soft)

D
Min

g u

g u




 

 

 (3.20) 

The first constraint is hard, while the second constraint is treated 

as soft. Soft constraints influence the topology through the 

Lagrangian multiplier (see algorithm below), but do not influence 

the termination of the algorithm, i.e., do not influence the feasible 

space. Typically compliance and stress are treated as hard 

constraints, while buckling and Eigen-value can be treated as 

either hard or soft constraints. 

3.7 Casting Constraints 

In addition to performance constraints, it is often important to 

include manufacturing constraints. For example, in [40] the 

authors proposed a projection method within a level-set 

formulation to impose thickness constraint for cast parts. 

Similarly, in [70], the authors imposed a density constraint, within 

the SIMP formulation, along the casting direction. This ensures 

that the density variable is non-decreasing along the casting 

direction (on either sides of the parting plane), preventing cavities 

in cast parts. In this paper, we adopt this method to the topological 

level-set formulation; specifically, after a casting direction is 

selected, we impose a constraint on topological level-set to be 

non-decreasing along the casting direction to prevent cavities. 

3.8 Proposed Algorithm  

The four performance constraints considered here are compliance 

(J ), p-norm Von Mises stress ( ), lowest Eigen-value ( ) and 

buckling load (P ); soft constraints are identified, and casting 

constraints are optional. 

The constraints are typically set relative to their initial values prior 

to optimization, and the objective is to minimize volume, i.e., the 

generic problem considered here is: 

 

( )

( )

( )

( )

( )

( )

1 0

2 0

3 0 3

4 0 4

5 0

6 0

    ( 1)

    ( 1)

    (soft)

    (soft)

D
Min

J J

P P

P P

Ku f



  

 

   



  








 

 





=

 (3.21) 

Thus, the constraint in Equation (3.22) implies that the final 

compliance must not exceed three times the initial compliance. 

 
0

3J J  (3.22) 

Similarly, Equation (3.23) implies that the final p-norm von Mises 

stress must not exceed twice the initial p-norm stress. 

 
0

2  (3.23) 

On the other hand, the buckling and Eigen-value constraints may 

be hard or soft. For a soft constraint 

 
0

1.2    (soft)P P  (3.24) 

the algorithm will attempt to find solutions (within the feasible 

space) that satisfy the above equation. Observe that, if one 

imposes a hard constraint: 

 
0

1.2P P  (3.25) 

the algorithm will terminate at the first iteration since the initial 

design will not satisfy this constraint! 

The overall algorithm is illustrated in Figure 7, and it proceeds as 

follows: 

1. The domain is discretized using hexahedral elements; the 

optimization parameters are initialized as 100  and 10 .  

2. Depending on the constraint imposed, several FEAs are 

performed. 

3. The constraints are evaluated, and the Lagrangian parameters 

are updated. 

4. If any of the hard constraints are violated, the algorithm 

proceeds to step-9, else, it proceeds to step-5.  

5. The topological sensitivity fields are computed, and the 

augmented topological level-set is extracted. 

6. The topology for the current volume fraction is extracted. 

7. If the topology has converged (i.e., if the change in compliance 

is less than 1%), proceed to step-8, else return to step-2. 

8. Decrement the target-volume fraction v v v , and return to 

step-2. 

9. Decrease the volume step-size v ; if the step-size is smaller 

than 
min
v , terminate the algorithm, else return to step-2. 



7 
 

 

Figure 7: Proposed algorithm.

4. NUMERICAL EXAMPLES  

In this section, numerical experiments are carried out to illustrate 

the above algorithm; the default parameters are: 

• Material properties: 112*10E =  and 0.3 =  

• All experiments were conducted using C++ on a Windows 7 64-

bit machine with the following hardware: Intel I7 960 CPU 

quad-core running at 3.2GHz with 6 GB of memory. 

4.1 L-bracket with Tip Load 

The first experiment involves the L-bracket, whose cross-section 

is illustrated in Figure 8 (units in mm), with a thickness of 6 mm.  

In the TO literature, it is common to use an L-bracket with a sharp 

reentrant corner [71]. This is perfectly acceptable for compliance 

dominated problems, but may not be desirable for stress-

constrained problems due to the stress singularity at the reentrant 

corner. We have therefore added a small fillet to relieve the stress 

singularity. The L-bracket is fixed on the top edge, while a unit 

load is applied as illustrated. The domain is discretized with 

24,330 elements, i.e., 90,738 degrees of freedom (DOF). 

 

Figure 8: L-bracket model. 

The specific constrained TO problem considered here is: 

 ( )

( )

1 0

2 0

D
Min

J J

  








 (4.1) 

Two scenarios are summarized in Table 2; the first scenario is 

compliance dominant, while the second is stress dominant. The 

final results, volume fractions and computing time are also 

summarized in Table 2. The active constraints are identified with a 

‘box’.  

 

Table 2: Constraints and results for problem in Figure 8. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume & 

running time (s) 

Compliance 
0

0

2

100

J J

 




 0

0

2

1.27

J J

 

=

=
 

0.34

142.11

v

t

=

=
 

Stress 
0

0

100

1.05

J J

 




 

0

0

1.75

1.05

J J

 

=

=
 

0.47

194.32

v

t

=

=
 

 

The corresponding optimized topologies are illustrated in Figure 9. 

Observe that when compliance is dominant, the classic stiff design 

is obtained, whereas when stress is dominant, a strong design is 

obtained where the fillet radius is increased to reduce stress [72].  
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Figure 9: Final topologies which are subject to dominant 

constraints of compliance (left) and Von Mises stress (right). 

Figure 10 illustrates the relative cost of various sections of the 

algorithm. As one can observe, significant portion (88%) of the 

computational time is spent on FEA, while the remaining 12% is 

spent on computing the topological sensitivity field, and other 

tasks.  

 

Figure 10: Computational cost for scenario-1 in Table 2. 

4.2 Plate with Pressure Load 

In the next example, we consider a plate geometry whose cross-

section is illustrated in Figure 11 (units in mm); the thickness is 10 

mm. The left face is fixed while a unit horizontal pressure is 

applied on the right face. The geometry is meshed with 50,560 

hexahedral elements, i.e., 167,280 DOF.  

 

Figure 11: Thick plate dimensions and pressure loading. 

The specific constrained TO problem considered here is: 

 
( )

( )

( )

1 0

2 0

3 0

D
Min

J J

P P



  












 (4.2) 

Three instances are summarized in Table 3; once again, the active 

final constraints are identified with a box. The execution time for 

the buckling-dominated problem is much longer due to the 

inherent computational complexity.  

 

Table 3: Constraints and results for problem in Figure 11. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume & 

running time (s) 

Compliance 
0

0

0

5

100

0.1

J J

P P

 







 
0

0

0

5

2.39

0.16

J J

P P

 

=

=

=

 

0.22

342.63

v

t

=

=
 

Stress 
0

0

0

100

2

0.1

J J

P P

 







 

0

0

0

5.25

2

0.11

J J

P P

 

=

=

=

 

0.22

401.09

v

t

=

=
 

Buckling  
0

0

0

100

100

0.9

J J

P P

 







 

0

0

0

1.90

1.73

0.9

J J

P P

 

=

=

=

 

0.71

234.34

v

t

=

=
 

 

The corresponding topologies are illustrated in Figure 12. As one 

can observe, the topologies for the first two cases are similar, and 

this is consistent with the results in Table 3. The topology for the 

buckling-dominated problem is, however, significantly different. 

   

 

Figure 12: Final topologies for compliance dominated (top) stress 

dominated (left) and buckling-dominated (right). 

In order to study the termination criterion, the iteration history for 

scenario-2 is illustrated in Figure 13 (the plot is to be interpreted 

from the right to left). Observe that the optimization starts with a 

volume decrement of 0.025, and it reduces when divergence is 

detected; the decrement increases slightly towards the end. Most 

importantly, the volume decrement is well above the minimum 

value during optimization. Thus, the termination is triggered by 

the hard stress constraint rather than the volume decrement 

constraint. 
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Figure 13: Iteration history of volume decrement for the scenario-

2 in Table 3. 

For scenario-2 in Table 3, the relative constraints are illustrated 

Figure 14 (the plots are to be interpreted from the right to left). 

The optimization terminates due to the stress constraint at a final 

volume fraction of 0.22. 

 

 

Figure 14: Constraint iteration history for the scenario-2 in the 

Table 3. 

4.3 Case Study: Flange 

This case study involves the flange illustrated in Figure 15; units 

are in inches. Flanges are commonly used, for example, to fasten 

pipes and rail-joints. The objective is to minimize the flange 

weight while subject to compliance, stress and Eigen-mode 

constraint. For FEA, 19,924 hexahedral elements are used to 

discretize the design domain, resulting in 63,666 DOF. 

 

 

Figure 15: Flange structure and dimensions. 

The specific constrained TO problem considered here is: 

 
( )

( )

( )

1 0

2 0

4 0 4    (soft,  if 1)

D
Min

J J

  

   








 

 (4.3) 

The Eigen-mode constraint is soft if the corresponding multiplier 

is greater than 1, to avoid early termination. 

Table-4 summarizes the results for 3 different scenarios. In 

particular, for scenario-3, observe that although the Eigen-value 

constraint is soft, its impact on the final result and topology is self-

evident.  

 

Table 4: Constraints and results for problem in Figure 15. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume 

& running 

time (s) 

Compliance 
0

0

0

2

100

0.1

J J

 

 







 
0

0

0

2

1.12

0.69

J J

 

 

=

=

=

 

0.44

156.91

v

t

=

=
 

 Stress 
0

0

0

100

1.05

0.1

J J

 

 







 

0

0

0

4.66

1.05

1.27

J J

 

 

=

=

=

 

0.44

185.97

v

t

=

=
 

 

Stress and 

Eigen-value 
0

0

0

100

1.2

1.5 (soft)

J J

 

 







 

0

0

0

1.84

1.20

2.49

J J

 

 

=

=

=

 

0.68

77.22

v

t

=

=
 

 

The corresponding topologies are illustrated in Figure 16. The 

volume fractions for the first two scenarios are identical, but the 

difference in topology is worth noticing (also see Table-4).  
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Figure 16: Final topologies for compliance dominated (top-left) 

stress dominated (top-right), and stress and Eigen-value dominated 

(bottom). 

In order to study the iteration history of the soft-constrained 

optimization, the volume decrement history is plotted in Figure 17 

for scenario-3 in Table 4. It is seen the volume decrement was 

kept constant until the last two steps when convergence error was 

detected.  

 

Figure 17: Volume decrement history for the scenario-3 in the 

Table 4. 

The constraint iteration history for scenario-3 in Table 4 is 

illustrated in Figure 18 where the lowest eigen-value sees a 

significant increase with material removal. However, since the 

eigen-value constraint is ‘soft’, it does not lead to early 

termination. The optimization terminated due to a hard stress 

constraint of 1.2 at a final volume of 0.68.  

 

Figure 18: Iteration history of constraints for the scenario-3 in 

Table 4. 

4.4 Case Study: Bicycle Frame  

In this case study, we use the proposed algorithm to find a 

conceptual design for a bicycle frame. The design space is 

illustrated in Figure 19 where all units are in centimeters.  

 

Figure 19: Design space of bike frame: front view (1st), top view 

(2nd) and side view (3rd). 

Two loads are applied as in Figure 20, where F1 is 60 N, and F2, is 

140 N; see [73]. The two loads act simultaneously, i.e., this is a 

multiple-load problem. The design is discretized into 51,280 

hexahedral elements, i.e., 176,367 DOFs.   
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Figure 20: The bike frame subject to multiple loads.  

Only one scenario is considered; the constraints and final results 

are summarized in Table 5.  

 

Table 5: Constraints and results for problem in Figure 20. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final vol. & 

time (s) 

Compliance, 

Stress and 

Buckling 

0

0

0

20

20

1.5 ( )

J J

P P soft

 







 
0

0

0

19.47

11.92

0.08

J J

P P

 

=

=

=

 

0.22

953.58

v

t

=

=
 

 

The final design is illustrated in Figure 21. 

 

Figure 21: Proposed design for a bike frame. 

4.5 Case Study: Bicycle crank  

In the final case-study, we optimize the design of a bicycle crank 

arm. The 2-D sketch of the design space is illustrated in Figure 22 

(units in mm), with a thickness of 15 mm. The structure is 

discretized using 36,608 elements, with 128,250 DOFs.  

 

Figure 22: Dimensions of the crank arm. 

In this example, a multi-load scenario is considered, i.e., during a 

full pedaling cycle, the crank arm passes through four distinct 

positions as illustrated in Figure 23. At each position, it 

experiences a different loading condition. At position A where the 

pedal is passing through the highest point, it sees a compressive 

load. At position B where the crank arm is horizontally placed, it 

sees a bending load. At position C, it sees a tension force. At 

position D, the load is negligible. The magnitudes of pedaling 

forces F1, F2 and F3 are in the ratio 1:5:2.2, with  F1 being 50 N 

[74].  

 

Figure 23: The crank arm subject to multi-load during a pedaling 

cycle [74]. 

The objective is to minimize the weight subject to the constraints 

summarized in Table 6; stiffness and strength being the most 

important constraints. A soft buckling constraint is imposed for 

the compressive load F1. Thus, one can impose different 

constraints for different sets of loads. 

The optimization results are summarized in Table 6 where it is 

noted that the compliance constraints for loads F1 and F3 are active 

at termination. Since this is a multi-load problem, the 

computational cost if fairly high (about 25 minutes), despite the 

use of fast assembly-free methods.  

 

Table 6: Constraints and results for problem in Figure 22. 

Loads Initial 

Constraints 

Final Results Final vol. & 

time (s) 

Compression

1F  
0

0

0

1.5

4

5 ( )

J J

P P soft

 







 

0

0

0

1.50

1.33

0.75

J J

P P

 

=

=

=

 

0.69

1507.29

v

t

=

=
 

Bending 

2F  

0

0

1.5

4

J J

 




 

0

0

1.25

1.01

J J

 

=

=
 

Tension 

3F  

0

0

1.5

4

J J

 




 0

0

1.50

1.33

J J

 

=

=
 

 

The final topology is illustrated in Figure 24. Although the design 

meets the performance constraints, it exhibits ‘undercuts’, i.e., 

cavities. This may not be desirable if the part needs to be cast. 
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Figure 24: Final design of crank arm. 

We therefore imposed a casting constraint (through the thickness) 

in addition to the performance constraints; the results are 

summarized in Table 7. Observe that the design now not only 

meets the performance constraint, but also the manufacturing 

constraint. In this example, the impact of the manufacturing 

constraint on performance, and computational time, was found to 

be negligible.  

 

Table 7: Constraints and results for problem in Figure 22. 

Loads Initial 

Constraints 

Final 

Constraints 

Final vol. & 

time (s) 

Compression
1F  

0

0

0

1.5

4

5 ( )

J J

P P soft

 







 
0

0

0

1.50

1.30

0.72

J J

P P

 

=

=

=

 

0.70

1489.59

v

t

=

=
 

Bending 

2F  

0

0

1.5

4

J J

 




 

0

0

1.23

1.01

J J

 

=

=
 

Tension 

3F  

0

0

1.5

4

J J

 




 0

0

1.50

1.30

J J

 

=

=
 

 

The resulting design is illustrated in Figure 25; observe that the 

design does not exhibit undercuts. 

 

Figure 25: Final design of crank arm with casting constraint. 

5. CONCLUSIONS 

The proposed method inherits the robustness and generality of the 

classic augmented Lagrangian method. Specifically, through 

several numerical experiments, we demonstrated that the proposed 

method can solve a variety of multi-constrained (single-load, 

multiple-load and multi-load) TO problems. By varying the 

constraint limits, we were able to explore the impact of these 

constraints on the final topology. We were also able to explore the 

impact of manufacturing constraint on the topology. Future work 

will explore the generalization of this method to multi-physics 

problems. 
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