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Abstract1 

The focus of this paper is on topology optimization of 

continuum structures subject to thermally induced buckling. 

Popular strategies for solving such problems include Solid 

Isotropic Material with Penalization (SIMP) and Rational 

Approximation of Material Properties (RAMP). Both methods 

rely on material parameterization, and can sometimes exhibit 

pseudo buckling modes in regions with low pseudo-densities. 

Here we consider a level-set approach that relies on the 

concept of topological sensitivity. Topological sensitivity 

analysis for thermo-elastic buckling is carried out via direct and 

adjoint formulations. Then, an augmented Lagrangian 

formulation is presented that exploits these sensitivities to solve 

a buckling constrained problem. Numerical experiments in 3D 

illustrate the robustness and efficiency of the proposed method. 

1. Introduction 

Topology optimization has rapidly evolved from an academic 

exercise into an exciting discipline with numerous industrial 

applications [1], [2]. Applications include optimization of 

aircraft components [3], [4], spacecraft modules [5], automobiles 

components [6], cast components [7], compliant mechanisms 

[8]–[11], etc. 

The focus of this paper is on topology optimization of 

structures subject to thermo-elastic buckling. As an illustrative 

example, consider the wing rib structure of a high Mach 

supersonic aircraft in Figure 1. During rocket boost, the aircraft 

is subject both to rapid acceleration and significant thermal 

gradients, with surface temperature as high as 
01650 C . Since the 

rib structures are welded onto the wing skins, uneven thermal 

heating may induce significant compressive stresses, resulting in 

buckling. Therefore, such structural components operating in 

extreme thermal environment must be designed to resist thermo-

elastic buckling.  

Thermo-elastic buckling poses both theoretical and 

computational challenges. In Section 2, popular methods for 

buckling-constrained topology optimization are reviewed, and 

the challenges are identified. In Section 3, we provide a brief 

overview of topological sensitivity based optimization; this is 

followed by the proposed method and its implementation. In 

Section 4, numerical experiments are presented, followed by 

conclusions in Section 5. 

2. Literature review 

2.1 buckling constrained topology optimization 

Buckling typically occurs in thin-walled structures [12]. 

Buckling constrained topology optimization was originally 

studied using ground structure (truss based) approaches, while 
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more recent methods are continuum based; the latter can be 

classified into the following types: Solid Isotropic Material with 

Penalization (SIMP), evolutionary structural optimization (ESO) 

and level-set. The ground structure and continuum methods are 

reviewed next. 

2.1.1 Ground structure  

Ground structure approach is the classic method for 

optimizing the topology of truss systems. In this approach, a 

network of truss members is first prescribed in a design domain. 

A size optimization is carried out on each truss member until the 

cross-section areas of non-optimal trusses approach zero, and can 

therefore be removed [13].    

 However, including buckling constraint in truss optimization 

is non-trivial. The forces in each truss member must satisfy 

constraints which discontinuously depend on design variables 

[14]. Traditional optimizers face difficulty in solving such 

problems. In [14], the author argued that including slenderness 

constraints into buckling problems can guarantee existence of 

solution, and simplify the algorithm. In [15], by using a 

smoothing procedure to remove singularity, size optimization 

was made more efficient. In a recent publication [16], the author 

used a mixed variable formulation to linearize buckling 

constraint over each structural member. 

2.1.2 SIMP 

In continuum topology optimization, the most popular 

method is Solid Isotropic Material with Penalization (SIMP). Its 

primary advantages are that it is well understood, robust and easy 

to implement [17]. Indeed, SIMP has been applied to a variety of 

topology optimization problems ranging from fluids to non-

linear structural mechanics.  

In thermo-elastic topology optimization, it was pointed out in 

[18] that the material interpolation used in SIMP exhibits zero 

slope at zero density, leading to robustness issues. To overcome 

this deficiency the Rational Approximation of Material 

Properties (RAMP) was developed, and its superior performance 

over SIMP was published in [19]. In [20], [21], a porous material 

penalization model was proposed for both macroscopic and 

microscopic material densities. It was also argued that in thermo-

elasticity, porous material model with optimal microstructures 

perform better. In [22] a robust three-phase topology 

optimization technique was used to design a multi-material 

thermal structures with low thermal expansion and high 

structural stiffness. 

In buckling constrained topology optimization, the 

appearance of pseudo buckling modes in low-density regions can 

pose problems. In [23], a buckling load criterion was introduced 

to ignore the geometric stiffness matrix of the elements whose 

density and principal stress were smaller than a prescribed value. 

In [24], the author argued such cut-off methods may abruptly 

change the objective function and sensitivity field, leading to 
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oscillation. Instead, the author suggested using different 

penalization scheme for stiffness matrix and geometric stiffness 

matrix. Although the author in [25] suggested it was difficult to 

select an appropriate penalty scheme for accurate calculation of 

buckling load factor, the proposed approach by [24] became a 

popular formulation for many researchers [26]. In a recent 

publication [27], a new approach to remove pseudo buckling 

mode was based on eigen-value shift, and pseudo mode 

identification.  

2.1.3 ESO 

ESO [28] is an alternate topology optimization formulation 

where finite elements are gradually removed based on their 

significance with respect to the objective function. BESO [29] 

addresses some of the limitations of ESO by permitting insertion 

of elements. In [30], a modified ESO method was proposed to 

maximize buckling load factor. The sensitivity of the lowest 

eigen-value was first derived, and the buckling eigen-value 

maximization was then formulated by suitably selecting the 

optimization criteria. 

2.1.4 Level-set 

The concept of level-set was first proposed in [31] to model 

the evolution of interfaces in multi-phase flows, and image 

segmentation problems [32]. In structural optimization, the level-

set method is used to capture the evolving topology, and this 

leads to well-defined boundaries over which mechanical 

response can be accurately computed, avoiding the ambiguity 

associated with density-based approaches.  

Specifically, in [33], the level-set method was coupled with 

ESO to nucleate holes, and to move boundaries based on an 

evolutionary stress criteria. In [34], the level-set was exploited to 

create a shape sensitivity based optimization framework. This 

was later developed to  include topological derivative, and 

implemented in a shape sensitivity based level-set formulation 

[35], [36]. The initial approach to propagate level-sets was 

through Hamilton-Jacobi equation [34], but this was gradually 

replaced by mathematical programming due to higher efficiency 

and better constraint control [37]. 

In recent years, the level-set method has been extended to a 

variety of problems. For example, in [38], a level-set method was 

implemented to minimize structural compliance while 

maintaining fiber paths smooth, and manufacturability for 

steered fiber composites.  

With specific reference to buckling-constrained topology 

optimization, in [39], a simplified buckling sensitivity field was 

incorporated into a level-set based framework to accelerate large-

scale topology optimization process, however thermally induced 

buckling was not considered. It is noted the switching of critical 

buckling eigen-mode during optimization can cause convergence 

difficulty. This paper does not address mode-switching; instead, 

our focus is on thermally induced buckling topology optimization 

problems.     

 

Figure 1: (a) Aircraft operating in high temperatures; (b) Wing 

design should consider thermal loads; (c) The underlying wing 

rib structure; (d) Optimizing the rib structure to resist thermo-

elastic buckling. 

2.2 Research gaps 

From the above literature review, one can conclude that there 

is significant interest in solving buckling constrained topology 

optimization problems, with the following research gaps: 

▪ Although thermal buckling is of significant importance, 

there has been very little research on thermally induced 

buckling constrained topology optimization. 

▪ Computing buckling sensitivity is expensive, and efficient 

approaches are needed.      

▪ Prior researchers have validated their algorithms on simple, 

typically 2D, examples. Extensions to large scale 3D 

problems is desirable. 

In this paper, the objective is to minimize the volume fraction, 

subject to several constraints, including thermo-elastic 

compliance and thermo-elastic buckling load factor. Specifically, 

we consider the topological level-set method proposed in [39] for 

pure-elastic buckling problems, and extend this to thermo-elastic 

buckling through two distinct approaches: direct and adjoint 

methods. In the topological level-set method, instead of relying 

on the Hamilton-Jacobi equations for level-set propagation [40], 

fixed-point iteration is exploited to advance the topology [41].  

3. Problem formulation and algorithm 

3.1 Optimization problem formulation 

A generic thermo-elastic bucking and compliance 

constrained topology optimization problem may be posed as: 
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where: 

:  Topology to be computed
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J

J

P
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 (2) 

In other words, the objective is to find the optimal topology 

with minimal volume within the design domain (D) while 

satisfying prescribed compliance and buckling constraints. 

During the optimization process, the displacement and 

temperature fields are calculated from thermo-elastic finite 

element analysis.  

3.2 Thermo-elastic FEA  

For completeness, we summarize finite element formulations 

of (weakly-coupled) thermo-elastic problems; recall that such 

problems reduce to solving two linear equations [12]: 

 
tK t = q  (3) 

 
st thKd = f = f +f  (4) 

The elemental thermal load vector in Equation (4) is formed via 

[12], [42]: 

 
e

d


= 
th T th

e ef B Dε  (5) 

 
0( ) T

et t= −th

eε Φ  (6) 

where: 

 

:  Element thermal load vector 

:  Element domain

:  Element strain-displacement matrix

:  Element elasticity matrix

:  Element thermal strain vector

:  Thermal expansion coefficient

:  Element temp

e

et





th

e

th

e

f

B

D

ε

0

erature 

:  Reference temperature

:  [1 1 1 0 0 0] in 3D; [1 1 0] in 2D 
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 (7)  

The stresses are obtained by subtracting the thermal strain 

from the total strain, and multiplying the resulting strain by the 

material tensor: 

 th

e e eσ = DBd -Dε   (8) 

Further details may be found, for example, in [43]. The 

compliance for a thermo-elastic system is defined as: 

 J = th T T
(f + f ) d = d Kd   (9) 

However, if there is no structural load ( 0=f in Equation (9)), 

minimizing compliance is questionable since in the absence of an 

external load, the best structure is no structure. Therefore, in this 

paper, we consistently assume there exists a structural load to 

prevent the ill-posed problem.  

We also assume that the temperature within the design 

domain is spatially uniform, i.e., solving Equation (3) becomes 

unnecessary. If the temperature fields are dependent on the 

design [44], the calculation of topological sensitivity must 

necessarily involve solving Equation (3). 

Finally, observe that Equation (4) represents a weakly-

coupled problem where the thermal field influences the 

displacements, but not the reverse. Strongly-coupled thermo-

elastic problems are beyond the scope of this paper.  

3.3 Buckling FEA 

The linear buckling load factor can be calculated from the 

well-known formulation [12]: 

  σ(K + K )υ = 0   (10) 

where 

:  Global geometric stiffness matrix

:  Linear buckling load factor

:  Buckling mode vector



σK

υ

 

In Equation (10), the global geometric stiffness matrix is 

defined via the assembly: 

 
N

1

[ ]e

e=

= σ σK k   (11) 

where N is the number of finite elements and the elemental 

geometric stiffness matrix are defined as: 

 [ ]
e

e dv


= 
T

σk G SG   (12) 

where G is obtained from shape functions by appropriate 

differentiation and reordering [12]. The matrix S is defined as: 
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s   (14) 

In addition, the stress in an element is defined as: 

 [ ] [ , , , , , ]T

e x y z xy xz yz     =σ   (15) 
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It is clear that, in Equation (10), the geometric stiffness 

matrix 
σK  is a function of stress (σ) which in turn depends on 

the topology, while the stiffness matrix (K), buckling load factor 

(λ) and buckling mode vector (𝒗) are explicitly dependent on the 

topology. It is also noted since the temperature field is uniformly 

elevated to a prescribed value, and the temperature field (t) is not 

dependent on the topology. 

A practical challenge that arises in solving large-scale 

topology optimization is the computational costs rising from the 

underlying FEA. To address the computational cost, we rely here 

on the assembly-free deflated conjugate gradient (AF-DCG) 

method proposed in [45]. The assembly free method rests on the 

observation that the computational bottle-neck in modern 

architecture is memory access [46]. The AF-DCG computes the 

preconditioner and the solution to the underlying linear system in 

an assembly-free manner, significantly reducing memory 

bandwidth, and therefore speeding up FEA. 

3.4 Buckling sensitivity analysis 

We now focus our attention on computing sensitivities that 

are essential for topology optimization. Let Q be any quantity of 

interest in an optimization problem. The sensitivity of Q with 

respect to a topological design variable 𝐱 is denoted by: 

 Q
Q


 

x
  (16) 

The derivatives of the global stiffness matrix and geometric 

stiffness matrix will be denoted by: 

 




K
K'

x
  (17) 

  


σ
σ

K
K σ

σ
  (18) 

In this section, two approaches are used to calculate the 

sensitivity, specifically for the linear buckling load factor  . 

3.4.1 Direct method 

Multiplying the buckling mode vector (
T
υ ) on both sides of 

Equation (10), and taking the derivative with respect to design 

variable, we have: 

 ' '   T T

σ σ σ2υ (K + K )υ+ υ (K + K + K )υ = 0   (19) 

Due to Equation (10), the first term in Equation (19) vanishes. 

Reordering terms in Equation (19), we have the sensitivity of the 

linear buckling load factor as: 

 
( ')T 


 +

 = − σ

T

σ

υ K K υ

υ K υ
  (20) 

A simple method to calculate 'σK is to use finite difference. 

Obviously, this method is too expensive and potentially 

inaccurate. Instead, we consider the following direct approach 

first.  

Observe that Equation (18) can be written as the summation 

over all finite elements:  

 
N

1j=
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σ σ

j

j

K K
σ σ

σ σ
  (21) 

where N  is the number of all finite elements, i.e., the sensitivity 

of the global geometric stiffness matrix is the summation of 

sensitivities over all elements. 

For a specific element ‘j’ in Equation (21), one can further 

expand the sensitivities over the six stress components: 
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Further, by definition: 
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Since the geometric stiffness matrices in elements other than ‘j’ 

are not explicitly dependent on the stress in j-element, the second 

term in numerator of Equation (23) drops out: 
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where 
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0 0

0 0
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s
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  (25) 

For the six stress components in Equation (15), it is easy to 

calculate the contributions in Equation (25). For example, when 

1k = , we have:  

 
1

1 0 0

0 0 0

0 0 0


 
  

=
 
  

s
  (26) 

Next, the term (
jk  ) in Equation (22) can be derived as 

follows. Rewrite Equation (8) for the j-element: 

 th

j j j
σ = DBd - Dε   (27) 

where the elemental thermal strain (𝜺𝒋
𝒕𝒉 ) can be calculated in 

Equation (6). Since we have assumed a uniform temperature 

increase, this is independent of design variable. Taking the 

derivative of each term in Equation (27), we have: 

   
j j jσ = DBd +DBd   (28) 

We can calculate the term (𝒅𝒋
′ ) in Equation (28) in the 

following manner. Taking derivative of the static equilibrium 

equation in Equation (4): 

   = thK d + Kd f   (29) 

where the structural force is assumed to be independent of design 

variable. Reordering terms, we have  

 
1( )−  = −thd K f K d   (30) 

The elemental displacement sensitivity in j-element (𝒅𝒋
′) can 

be directly obtained from Equation (30).  
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In summary, the direct method proceeds as follows: (1) the 

derivative of the global geometric stiffness matrix is computed 

with respect to each stress component for every element using 

Equation (24); (2) the derivative of the global stress vector is 

computed using Equation (28); (3) the two results are combined 

using Equation (21) and Equation (22); and (4) finally Equation 

(20) is used to arrive at the final sensitivity of the linear buckling 

load factor λ.  

The direct method is easy to derive and implement. However, 

it will be demonstrated in the numerical experiments that it is 

computationally inefficient for the following reason: calculating 

  in Equation (30) requires solving a global problem for each 

element. This is impractical even for simple finite element 

models. 

3.4.2 Adjoint method 

An alternative and efficient way is by using adjoint variables 

and constraints. By carefully selecting the adjoint variables, the 

computationally expensive terms can be eliminated. This was 

first proposed in [47] for structurally inducted buckling problems. 

Here, we consider its generalization to thermo-elastic problems.  

Multiplying buckling mode vector (
T
υ ) on both sides of 

Equation (10) and augmenting this with the two constraints 

multiplied by two suitable adjoint variables ( μ ) and (w), we have: 

 ( ) [ )] ( ) 0T T

th+ + − + + − =T
υ K K υ μ σ Yd Zε w f Kd   (31) 

In the above equation, the matrix (Y) and (Z) relate displacement 

and thermal strains to stresses, respectively.  

 
N
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j =
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In Equation (31), the adjoint μ links the stresses to 

deformation, and the adjoint w links the deformation to external 

load. Then taking the derivative of Equation (31) and simplifying 

terms, we get: 
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The first adjoint (μ) is chosen such that the terms with (𝝈′) 
can be dropped from Equation (34):  

 ' ' 0T


+ =


T K
v σ v μ σ

σ
  (35) 

After factoring and rearranging terms, we have: 

 T T 


= −


K
μ v v

σ
  (36) 

where the term 



K

σ
 is the assembly of all elemental sensitivities, 

each containing six components. 
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σK K

σ
  (37) 

Equation (34) simplifies to: 
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w f K d Kd
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The second adjoint w is chosen such that the terms containing 

'd  can be cancelled out: 

 ' ' 0T T+ =μ Yd w Kd   (39) 

After rearranging terms, we have: 

 1T T −= −w μ YK   (40) 

Therefore, the sensitivity of the buckling load factor in 

Equation (38) can be expressed as: 

 
1

' ( ' ' ' ' ' )T T T T T

thT
 = − + − + −

σ

υ K υ μ Z ε μ Y d w f w K d
υ K υ

  (41) 

In summary, the adjoint method proceeds as follows: (1) 

augment two adjoint terms into the original buckling expression 

as in Equation (31); (2) calculate the adjoints such that 𝝈′  in 

Equation (36) and 𝒅′ in Equation (39) drop out; (3) reorder the 

sensitivity expression as in Equation (41) to calculate  . Since 

the computation process does not involve the stiffness matrix 

inverse operation, the adjoint method is more efficient.   

The last step is to compute the sensitivity of the global 

matrices in Equation (20) and Equation (41), i.e., 𝑲′, 𝑲𝝈
′ , 𝒀′ and 

𝒁′ . If pseudo-density parameterization is used (as in SIMP or 

RAMP), then the sensitivities can be computed via their 

respective material interpolation scheme [48].  

One disadvantage of SIMP is the introduction of localized 

artificial buckling modes in low pseudo-density regions [26]. In 

[23], the stress stiffness matrix associated with low density 

elements was completely neglected during stress stiffness matrix 

calculation. In [49], a differentiable version of interpolation 

schemes was proposed where the lower bound of pseudo-density 

was carefully selected to avoid artificial modes.   

In this paper, the sensitivities are computed by evaluating the 

discrete topological sensitivity at the center of each element, thus 

avoiding the challenges with low density elements. In other 

words, the sensitivities are defined as follows [50]: 

 e
K K   (42) 

 'Y DB   (43) 

 'Z D   (44) 

It should also be noted that the buckling topological 

sensitivity field in Equation (41) are non-monotonic which 

means the sensitivity can take either a positive or a negative value 

during optimization. This non-monotonic behavior can pose 

challenges for traditional monotonic approximation methods. 

Such numerical challenge can be avoided with non-monotonous 

approximation methods like globally convergent version of 

MMA (GCMMA) and gradient-based MMA (GBMMA). In this 

paper, we employ topological sensitivity based level-set method 

that is proven to be robust for solving the non-monotonous 

problem, as illustrated later through numerical experiments. 

We must emphasize that the above sensitivity analysis 

approach assumes that the buckling mode is unique. In other 
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words, in situations where structures have multiple buckling 

modes, the proposed method does not guarantee local minima; 

readers are referred to [51] for more details. Therefore, buckling 

mode switching case is beyond the scope of this paper and will 

be studied in future research.      

3.5 Augmented Lagrangian method 

Given the expressions for sensitivities, we now consider 

solving the topology optimization problem in Equation (1). This 

is a special case of generic constrained optimization problem: 

 
( , )

( , ) 0
i

Min f

g
x

d

d
  (45) 

A popular method for solving such constrained optimization 

method is the augmented Lagrangian method [52], where the 

constraints are absorbed into the objective function through: 
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i i i i i
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:  Augmented Lagrangian

:  Auxiliary Lagrangian

:  Lagrangian multipliers

:  Penalty parameters

:  Number of constraints

i

i

i

L

L
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Observe that the gradient of augmented Lagrangian is given 

by: 

 
1

m

i
i

L f L   (49) 

where 

 
     0

0                    0
i i i i i i i

i

i i i

g g g
L

g
  (50) 

For the topology optimization problem posed in Equation (1), 

the objective is the volume, and therefore the topological 

sensitivity is given by:  

 1f   (51) 

For the constraint functions, the buckling sensitivity can be 

computed by Equation (20) and (41) while the sensitivity for 

compliance can be found in [50].  

In the augmented Lagrangian method, the Lagrangian 

multipliers and penalty parameters in Equation (47) are 

initialized as follows: 

 
0 1
i

 , 
0 10
i

   (52)  

Then the augmented Lagrangian is minimized using, for example, 

conjugate gradient method. In every iteration, the multipliers are 

updated as follows: 

 
1 ˆmax{ ( ),0}, 1,2,3,...,k k k

i i i i
g i mx   (53) 

where the ˆkx is the local minimum at the current k iteration. The 

penalty parameters are updated via: 

 

1
1

2 1

             min( , 0) min( , 0)

max( , ) min( , 0) min( , 0)

k k k
k i i i

k k ki
i i i

g g

k g g
  (54) 

where 0 1  and 0 ; typically, 0.25 and 10 [52]. 

3.6 Proposed method  

Piecing it all together, the proposed method for thermo-

elastic topology optimization (TO) combines the topological 

sensitivities and the augmented Lagrangian method; the 

algorithm proceeds as follows: 

1. The optimization starts at a volume fraction of 1.0, i.e., the 

‘current volume fraction’ v is set to 1.0, and the initial 

‘volume decrement’ v  is set to 0.025. The Lagrangian 

multipliers and parameters are initialized per Equation (52). 

2. The linear static thermo-structural FEA problem in Equation 

(3) is solved and the stresses are extracted at the center of 

each element via Equation (8).  

3. The linear buckling eigen-value problem in Equation (10) is 

then solved by using the thermal stress calculated from Step-

2. The buckling topological sensitivity field is computed at 

the center of each element by either the direct method per 

Equation (20), or the adjoint method per Equation (41).  

4. Using the augmented Lagrangian formulation, the 

sensitivity fields of the objective function and constraints are 

combined using Equation (49). 

5. The augmented Lagrangian is then minimized. If the 

topology converges, the optimization moves to the next step 

and volume decrement is enlarged by 10%, else the volume 

decrement is reduced by half, and the optimization returns to 

Step-2. Our volume decrement algorithm is dynamic and 

adaptive to various optimization stages: a larger volume 

decrement value is used in early stage to reduce overall 

computational time while a much smaller value is utilized 

when optimization requires smaller step size for 

convergence. The iterations are repeated until the final 

volume fraction is reached or any of constraints is violated. 

6. If the current volume fraction is smaller than the target 

volume fraction (v < vtarget), the algorithm exits. Else, the 

volume is further reduced, and the optimization returns to 

Step-2. The iterations are repeated until the final volume 

fraction is reached or any of constraints is violated.
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Figure 2: An overview of the proposed algorithm. 

4. Numerical experiments 

In this Section, we demonstrate the proposed method through 

numerical experiments. The default parameters are as follows: 

• A thermal load is applied by increasing the temperature 

uniformly by ∆𝑡 with respect to a reference temperature of 

𝑡0 = 25℃ (the reference temperature is only relevant for 

determining the appropriate material properties). 

• Hexahedral (8-noded) elements are used for 3D finite 

element analysis. 

• All experiments were conducted using a C++ 

implementation on a Windows 10 machine, with I7-

5960X, 16 GB. 

4.1 Benchmark example 

The first experiment involves the buckling of a 3D column 

with a width of 0.05m and a length of 0.25m, which was 

previously studied in [39], and is illustrated in Figure 3. The 

material is assumed to be steel, i.e., 2 11 PaE e= , 0.3 =  and 
o1.1 5 / Ce = − . As illustrated in Figure 3a, the structure is 

clamped at the bottom and a compressive load of 1.0 5NF e=  is 

applied at the center of the top edge; the structure is also subject 

to a homogeneous temperature elevation 
ot 150 C = .  Note that 

the 3D column will buckle out of plane as illustrated in Figure 3c.  

 
Figure 3: (a) A thin column structure with a thickness of 0.01m; 

(b) CAD model; (c) Buckling mode. 

In this example, the objective is to minimize the volume 

fraction, while thermo-elastic compliance and thermal buckling 

load serve as constraints. Specifically, we search for the lightest 

design whose final compliance is no larger than 2.5 times its 

initial compliance, while the final buckling load factor is greater 

than or equal to 60% of its initial value. Formally, this can be 

expressed as: 
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D

0

0

o

| |

2.5

0.6

subject to

t 150 C

Min

J J

P P

st th
Kd = f + f

  (55) 

4.1.1 Direct and adjoint methods  

First, in order to compare the efficiency of direct and adjoint 

methods, we consider several coarse meshes, and compare the 

computational costs. The results are summarized in Figure 4. 

Observe that the proposed adjoint method is significantly faster 

than direct method, for reasons explained earlier. For large-scale 

problems, the direct method becomes impractical and will not be 

considered for the remainder of the paper. 

 
Figure 4: Comparison of computational time of the direct and 

the adjoint methods.  

4.1.2 Importance of buckling and thermal load 

Next, with the objective of studying the impact of temperature 

elevation and buckling constraint on topology optimization, we 

consider the problem in  Figure 3 under three different scenarios: 

(a) where buckling constraint and thermal load are neglected (i.e., 

only compliance constraint is considered), (b) buckling 

constraint is neglected but thermal load is included in the 

compliance computation, and finally (c) where both buckling 

constraint and thermal load are included.  

In this experiment, we use 30,000 elements (i.e., 104,832 

degrees of freedom (DOF)) to discretize the design domain. The 

adjoint method is used due to its efficiency. The resulting 

topologies for the three scenarios are illustrated in Figure 5(a), 

Figure 5(b) and Figure 5(c), respectively. The impact of thermal 

load and buckling constraint are clearly observable. The 

observed difference in final topologies sheds light on the 

significance of including thermal loads in buckling constrained 

topology optimization. The impact of thermal load can be 

understood by studying Equation (4) where inclusion of the 

design dependent thermal load changes both the stress 

distribution (compared with pure elastic case) and the geometric 

stiffness matrix. In other words, thermal effects often lead to 

increased compressive loads and buckling, thereby affecting the 

final topology.  

As expected, with additional constraints, the optimization 

problem terminates at a higher volume fraction (see Table 1). 

   
Figure 5: (a) Compliance constrained elastic TO; (b) 

Compliance constrained thermo-elastic TO; (c) Buckling and 

compliance constrained thermo-elastic TO.  

The final volume fractions and constraints are summarized in 

Table 1 where the active constraints are emphasized with a ‘box’. 

It is noted that compared to case (b), a lower volume fraction is 

reached in case (c) despite the additional thermal effects. One 

plausible reason is that, the thermal sensitivities are non-

monotonic [53]. 

Table 1: Constraints and results for problem in Figure 5. 

Topology Initial 

Constraints 

Final 

Constraints 

Volume & 

time (sec) 

Figure 5(a) 
02.5J J  

02.50J J=  
v=0.33

T=67.32
 

Figure 5(b) 0

0

2.5

0.6

J J

P P




 

0

0

1.48

0.60

J J

P P

=

=
 

v=0.59

T=145.68
 

Figure 5(c) 
0

0

o

2.5

0.6

t 150 C

J J

P P





 =

 

0

0

o

2.50

0.91

t 150 C

J J

P P

=

=

 =

 

v=0.57

T=197.03
 

 

For the specific case of Figure 5(c), the iteration histories with 

evolving topologies are illustrated in Figure 6 where the values 

of the compliance and buckling load factor are scaled with 

respect to the initial values at volume fraction of 1.0. Observe 

that as the volume fraction decreases, the compliance 

monotonously increases, while the buckling load factor generally 

decreases. The non-monotonic nature of buckling curve in Figure 

6 was discussed earlier in Equation (23) and Equation (41).  
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Figure 6: Iteration history for the topology in Figure 5(c). 

4.1.3 Mesh independence 

In this section, we study the effect of mesh size on the 

topology optimization results. For the case study (c) of Figure 5, 

we use various mesh sizes to discretize the 3D column.  

The mesh sizes vary from 10,000 to 40,000 elements. The 

classic radial filtering technique [17] is used for smoothing 

topological sensitivity fields. The final topologies and 

corresponding volume fractions are illustrated in Figure 7 and 

Table 2. As one can observe, neither the final topologies nor the 

volume fractions are strongly dependent on the mesh size.    

 
Figure 7: Final topologies of different mesh sizes for case study 

of Figure 5(c) where the mesh densities and volume fractions are 

listed in Table 2. 

 
Table 2:Final volume fractions for mesh independence study. 

Mesh densities Volume fraction Final topologies 

10,000 0.58 Figure 7(a) 

20,000 0.58 Figure 7(b) 

30,000 0.57 Figure 7(c) 

40,000 0.58 Figure 7(d) 

 

4.2 Industrial application: airplane wing rib structure 

The purpose of this experiment is to demonstrate the 

robustness of the proposed adjoint method for optimizing an 

airplane wing rib structure. In wing structures, to maintain wing 

contours in chord-wise direction, and to shorten the length of 

longitudinal wing stringers, ribs are used as internal supporting 

units as shown in Figure 8 [54]. 

 
Figure 8: Wing rib structures with lower skin removed [54].  

The rib structure consists of three distinct sections as 

illustrated in Figure 9: the leading-edge portion, the wing box 

portion and trailing edge. In the leading edge, lightening holes 

are often introduced for mass reduction and accessibility of 

wiring and pipe lines. Horizontal stiffeners are also used to 

prevent buckling. In the wing box portion, horizontal and vertical 

beads are used both to stiffen the structure and to prevent 

buckling. Trusses are heavily used in trailing edge portion. The 

rib can be welded, riveted or glutted onto wing skins. The 

assembly configuration can easily carry heat from hot skin 

(shown in Figure 1) to the rib structures, and the induced thermal 

stress may lead to buckling.  

 
Figure 9: Wing rib construction [54]. 

Lightening holes and stiffening beads are often designed 

based on experience, and may not be optimal. In this section, the 

proposed thermo-elastic topology optimization method is used 

for optimizing both the leading-edge portion and wing-box 

portion. 

 

4.2.1 leading edge optimization  

During flight, the wing ribs are subject to three types of loads: 

(a) aerodynamic lift and drag forces, (b) concentrated forces from 

its connection with landing gears and fuselage, and (c) 

gravitational body force [54]. In this experiment, only the 

dominating aerodynamic forces are considered for simplicity. 

With speed up to 24 Mach, the lift and drag pressure on a 
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supersonic aircraft (e.g., space shuttle) can be as high as 
8 210 (N/m ) , while the surface temperature can be as high as

o1650 C . Although thermally protected [55] the ribs underneath 

the skin can still reach 
o o170 C 270 C [55]. 

As shown in Figure 10, the leading edge is assumed to be 

fixed at the right edge, and loaded with a drag pressure of 

146𝑀𝑃𝑎 on the top edge and a lift pressure of 430𝑀𝑃𝑎 at the 

bottom. The entire structure is subject to an increase in 

temperature of ∆𝑡 = 270℃ . The material is assumed to be 

titanium alloy [56] with an elastic modulus of 𝐸 = 111𝐺𝑃𝑎 , 

Poisson's ratio of 𝑣 = 0.33 and thermal expansion coefficient of 

𝛼 = 6.0𝑒 − 6/℃.  

For FEA, 294,670 hexahedral elements are used to discretize 

the design domain, resulting in 972,192 DOF. The optimization 

problem is as follows:  

0

0

o

| |

1.5

0.4

subject to

t 270 C

D
Min

J J

P P

st th
Kd = f + f

  (56) 

 
Figure 10: Leading-edge with a thickness of 0.1m, and applied 

boundary conditions (units: meters). 

In words, the objective is to find the optimal topology with 

the minimal volume and its compliance is no more than 1.5 times 

the initial compliance, and its buckling load factor is no less than 

40% of original value.  

To illustrate the impact of thermal load, we also solve the above 

problem by neglecting the temperature increase. The resulting 

topologies for the two scenarios are illustrated in Figure 11. It 

can be observed that the topologies are similar, but with the 

thermal load, the optimization terminates at a higher volume 

fraction. The numerical results are summarized in Table 3.  

 

 
Figure 11: Optimal designs for the rib’s leading-edge portion: (a) 

The design with final volume fraction of 0.52, with buckling 

constraint but no thermal load; (b) The design with final volume 

fraction of 0.7, with buckling constraint and thermal load. 

Table 3: Constraints and results for problem in Figure 10. 

Topology Initial 

Constraints 

Final 

Constraints 

Volume & 

time (min) 

Figure 11(a) 0

0

1.5

0.4

J J

P P




 0

0

1.44

0.4

J J

P P

=

=
 

v=0.52

T=42
 

Figure 11(b) 0

0

o

1.5

0.4

t 270 C

J J

P P





 =

 
0

0

o

1.17

0.4

t 270 C

J J

P P

=

=

 =

 

v=0.70

T=32
 

 

4.2.1 wing-box optimization  

Next, we consider optimization of the wing-box portion 

illustrated in Figure 12 where both the left and right ends are 

fixed, a lift pressure of 430MPa  is applied at the bottom, and a 

shear drag pressure of 146MPa  is exerted on the top edge. For 

FEA, 308,480 finite elements are used to discretize the design 

domain, leading to 1,022,328 DOF. The temperature rise is 

assumed to be ot 170 C . The problem is posed as:  

0

0

o

| |

3.5

0.5

subject to

t 170 C

D
Min

J J

P P

st th
Kd = f + f

      (57) 

 
Figure 12: Rib wing-box portion with a thickness of 0.1 m, and 

applied boundary conditions. 

The resulting topologies for the two scenarios (without and 

with thermal load) are shown in Figure 13. The results are 

summarized in Table 3. While both the buckling-compliance 

constrained problem (in Figure 13 (a)) and thermo-elastic 

optimization (in Figure 13 (b)) terminate due to buckling 

constraint, their optimized topologies have visibly different. 

https://en.wikipedia.org/wiki/Titanium_alloy
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Figure 13: Optimal designs for the wing box portion: (a) With 

buckling constraint but no thermal load; (b) With buckling 

constraint and thermal load. 

Table 4: Constraints and results for problem in Figure 13 

Topology Initial 

Constraints 

Final 

 Constraints 

Volume & 

time (min) 

Figure 13(a) 0

0

3.5

0.5

J J

P P




 0

0

2.19

0.5

J J

P P

=

=
 

v=0.53

T=63
 

Figure 13(b) 0

0

o

3.5

0.5

t 170 C

J J

P P





 =

 

0

0

o

2.32

0.5

t 170 C

J J

P P

=

=

 =

 

v=0.51

T=71
 

 

It can be seen the optimized designs (in Figure 11 and Figure 

13) are non-trivial and quite different from the traditional design 

(in Figure 9). By employing the proposed topology optimization 

method, the rib structure can be lightened by nearly 40% with a 

moderate compromise in stiffness and buckling resistance.  

5. Conclusions 

The main contribution of the paper is a new method for 

buckling constrained thermo-elastic topology optimization. Two 

different formulations were presented and compared. Both 

formulations exploit the concept of topological sensitivity; thus 

material parameterization is not required. As the numerical 

experiments reveal, the impact of thermal load on the final 

topologies can be significant for certain problems.  

This paper is limited to linear buckling analysis and structure 

stiffness matrix is also assumed unchanged [57]. Although 

linear analysis is sufficient for simple thin plates and flat 

structures, non-linearity has to be considered in many situations 

where structures undergo significant pre-buckling rotations.  
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