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Abstract  

Concurrent multiscale damage models are often used to quantify the impacts of manufacturing-

induced micro-porosity on the damage response of macroscopic metallic components. However, 

these models are challenged by major numerical issues including mesh dependency, convergence 

difficulty, and low accuracy in concentration regions. We make two contributions that collectively 

aim to address these difficulties. Firstly, we develop a novel adaptive assembly-free impl-exp 

(AAF-IE) temporal integration scheme for nonlinear constitutive models. This scheme prevents 

the convergence issues that arise when implicit algorithms are employed to model softening. Our 

AAF-IE scheme autonomously adjusts step sizes to capture intricate history-dependent 

deformations. It also dispenses with re-assembling the stiffness matrices amid runtime for elasto-

plasticity and damage models which, in turn, dramatically reduces memory footprints. Secondly, 

we propose an adaptive clustering-based domain decomposition strategy to dramatically reduce 

the spatial degrees of freedom by agglomerating close-by finite element nodes into a limited 

number of clusters. Our adaptive clustering scheme has static and dynamic stages that are carried 

out during offline and online analyses, respectively. The adaptive strategy determines the cluster 

density based on spatial discontinuity and controls adaptive clusters via field estimations. As 

demonstrated by numerical experiments the proposed adaptive method strikes a good balance 

between efficiency and accuracy for fracture simulations. In particular, we use our efficient 

concurrent multiscale model to quantify the significance of spatially varying microscopic porosity 

on a macrostructure’s softening behavior.  

 

Keywords: Reduced-order model; Adaptive spatiotemporal dimension reduction; Multiscale 

simulation; Continuum damage model; k-means clustering. 

 

1. Introduction 

Cast alloys have heterogeneous material properties which are primarily due to manufacturing-

induced defects. Process-induced pores are critical defects that generally appear due to gas or 

shrinkage [1,2]. These pores are non-uniformly distributed in a metallic component and typically 

possess complex spatially varying morphologies, see Figure 1(a). Porosity deteriorates a 

component’s structural integrity and load-carrying capacity where alloys are ultimately fractured 

by crack propagations through pores [3–5]. It is, therefore, crucial to quantify the effects of local 

porosity on a macrostructure’s damage response. This quantification is typically achieved via 

multiscale models that leverage the scale separation between macro-components and micro-pores. 
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While these models are quite powerful, in the presence of softening they become prohibitively 

expensive, memory demanding, and error prone. In this paper, we aim to address these challenges 

via an adaptive reduced-order multiscale damage model that predicts the strain-softening behaviors 

of manufactured alloys with complex local porosity defects. 

 

Figure 1 Multiscale modeling with damage: (a) A metallic component contains non-uniformly distributed 

microscale pores whose morphologies are identified via 3D X-ray tomography. (b) The distribution of the damage 

patterns (fracture bands) on the macro-component is strongly affected by its spatially varying porous microstructures.  

1.1. Background and relevant works 

The influence of micro-porosity on alloys’ macroscopic responses can be quantified by various 

multiscale models [6], among which the homogenization-based method is particularly successful 

due to the well-established scale-coupling theory. This theory involves the solutions of two nested 

boundary value problems (BVPs) between macroscopic integration points (IPs) and the associated 

microstructures: at each increment of the solution process, macro deformation gradients are used 

to build and solve an admissible microstructural BVP whose homogenized solutions provide the 

macro variables for the next increment. The coupled iterations continue till both scales achieve 

equilibriums. The major advantage of multiscale models is the explicit treatment of microstructure 

which dispenses with the need to devise phenomenological constitutive laws [7].   

The concept of representative volume element (RVE) [8] plays an essential role in multiscale 

modeling as microscale BVPs are solved in such domains. The size of an RVE should be 

sufficiently large such that a larger domain with different local morphologies provides the same 

homogenized behavior. In most practical applications, however, the large RVE size and the 

embedded morphological details result in high computational costs, especially for the finite 

element method (FEM) [9]. An efficient alternative to FEM is the method of fast Fourier 

transformation (FFT) [10] which typically uses a homogeneous auxiliary elastic material as the 

reference medium to predict the effective responses of heterogeneous microstructures with 

geometrical or material nonlinearity. FFT relies on voxelated microstructure representation which 

limits this method’s ability to capture fine geometrical details. Additionally, FFT does not apply 

to microstructures with infinite moduli contrast between material phases since elastic tensors lose 

coerciveness in such cases and, in turn, result in non-unique full-field solutions [11].  

To reduce the simulation costs of FEM and FFT, reduced-order models (ROMs) are developed 

where the key idea is to systematically reduce the number of unknown variables via offline 

calculations. Transformed field analysis (TFA) [12] and its later version non-uniform transformed 

field analysis (NTFA) [13] are two of the earliest ROMs. In these two methods, the number of 
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state variables is reduced by expressing arbitrary strain fields as a function of precomputed 

eigenstrains.  

Clustering-based ROMs are recent approaches for predicting the nonlinear responses of 

heterogeneous materials. Self-consistent analysis (SCA) [14] assumes that elements with similar 

elastic responses behave similarly in plastic deformations. In this method, clusters are generated 

in an offline stage by identifying and grouping voxels with similar elastic responses and the cluster-

to-cluster interaction is quantified by incremental Lippmann-Schwinger (LS) equations. The 

number of unknown variables in SCA is significantly smaller than that in FEM since it assumes 

identical states per cluster. Virtual clustering analysis (VCA) [15], a variant of SCA, further 

improves efficiency by avoiding outer loop iterations and considering boundary terms ignored in 

LS equations. FEM-cluster-based analysis (FCA) [16] constructs the interaction matrix based on 

clusters’ eigenstrains offline and approximates microstructural effective properties online by 

following the principle of cluster minimum complementary energy. In deflated clustering analysis 

(DCA) [17], a clustering-based domain decomposition is universally applied to macro- and micro- 

domains to accelerate, respectively, high-fidelity calculation of macroscale deformations and 

effective microscopic responses. Its clusters are created by agglomerating close-by nodes where 

high-fidelity macroscale solutions are accelerated via deflated methods and effective 

microstructural responses are expedited in a coarse-graining manner such that nodal states in each 

cluster take on the same value. 

Although ROMs have proven highly efficient in simulating elasto-plastic deformations, their 

successful application in modeling fracture is rare due to the intricate deformation mechanics. 

Fracture is generally modeled by two different approaches: (1) a fracture mechanics-based discrete 

approach that directly simulates displacement discontinuity between fracture interfaces using 

elastic mediums [18], and (2) a continuum mechanics approach that emulates fractures via strain 

softening using localized plastic strains. While most ROMs are developed in the realm of 

continuum mechanics, their applications in the second fracture simulation approach are obstructed 

by softening-induced numerical instabilities. Specifically, the stiffness matrices of damaged 

materials lose positive-definiteness amid crack propagation causing ill-conditioned equilibrium 

equations with imaginary wave speeds [19]. If not properly resolved, solutions of the ill-posed 

fracture model exhibit spurious mesh dependency that restricts damage elements to single-element 

wide fracture bands and causes unphysically diminishing energy dissipations upon mesh 

refinements. Numerical remedies include crack band theory [20], non-local models [21], and 

phase-field methods [22]. These remedies either introduce mesh-dependent regularizations or 

modify damage evolution to spread the fracture over finite regions.  

Another difficulty in simulating softening via ROMs is the convergence of pure implicit time 

integration schemes. In these schemes, convergence issues arise due to the non-positive-definite 

stiffness matrices which cause near-zero or negative gradients in incremental algebraic systems. 

One way to address this issue is to use explicit time integration schemes which integrate the 

equations of motion explicitly through time where current kinematic solutions are directly 

extrapolated from previous steps. However, explicit schemes require much smaller time steps 

compared to implicit schemes to perform stably and, in turn, are more expensive. 

To improve the emulation accuracy of strain-softening, adaptive discretization is often 

integrated with damage models to enrich spatial interpolations at localized regions while 

maintaining manageable computational costs. A typical example is adaptive meshing in FEM 

which is classified as either h-adaptivity or p-adaptivity [23] (in h-adaption element types are 

unchanged while p-adaption adjusts mesh types by assigning high-order interpolations in critical 
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regions and coarse interpolations elsewhere). Adaptive meshing is also utilized in multiscale 

damage models [21–23] which often involves identifying the critical regions in the macro-domain 

where concentrations are expected to develop. The difficulties associated with such an approach 

include precise anticipation of the critical regions, efficient swap between coarse and fine meshes, 

and coupling non-matching meshes on the boundaries of subdomains to enforce displacement 

compatibility. These difficulties can be alleviated by using periodic unit cells with congruent 

boundaries over different subdomains and enforcing displacement compatibility by Lagrangian 

multipliers [27]. The adaption strategy is only recently integrated with ROMs [28] where spatial 

refinements are adaptively performed over material clusters during plastic deformations. These 

refinements rely on an iterative procedure that, based on a heuristic error metric, rewinds the 

simulation state to a previous time step where state variables are recalculated on a finer 

discretization.   

1.2. Research gaps and our contributions 

We summarize the research gaps in damage modeling for multiscale metallic components as 

follows: 

▪ Existing methods primarily rely on direct numerical simulations (DNS) to emulate 

macroscopic damage behaviors with associated microscale heterogeneities. Since these 

methods are generally memory demanding and computationally expensive, efficient ROMs 

with high accuracy are needed to quantify the effect of micro pores on the macro 

component response. 

▪ Most existing ROMs mainly focus on nonlinear elasto-plastic deformations that involve 

strain-hardening and their successful applications for modeling damage simulations are 

limited due to softening-induced numerical instabilities. New numerical methods are 

needed to enable ROMs to resolve softening efficiently and robustly. 

▪ While clustering-based ROMs are highly efficient in approximating microstructures’ 

effective responses, they lose accuracy in concentration regions with highly localized 

softening. Advancements in ROMs are needed to achieve global and local accuracy.  

To fill these gaps, we propose a novel ROM to simulate the damage behavior of metallic alloys 

with process-induced microscopic porosity. Our method is called adaptive deflated clustering 

analysis (ADCA) and involves two major contributions. Firstly, it involves a new adaptive 

assembly-free impl-exp (AAF-IE) temporal integration scheme which resolves the softening-

induced convergence issues by preserving the positive-definiteness of the underlying algebraic 

system amid damage evolution. Our AAF-IE does not require online re-assembly of the global 

stiffness matrix which dramatically improves computational efficiency. Secondly, we develop a 

novel adaptive spatial discretization strategy which consists of a static offline clustering stage and 

an online dynamic stage. While the offline stage assigns high cluster densities in critical regions 

identified through inexpensive elastic loadings, the online procedure adaptively adjusts cluster 

densities over crucial areas where softening is expected to initiate and propagate. We integrate the 

online adaption stage with a novel error metric to automatically detect spatial regions and temporal 

instances (i.e., there is no need for rewinding the simulation back to an earlier instance) that need 

finer interpolations. To prevent softening-induced spurious mesh dependencies on multiple scales, 

we regularize damage evolutions with macroscopic non-local functions and fracture energy 

stabilized micro-damage models, both of which are systematically integrated with our AAF-IE. It 

is noted that while we integrate our adaptive techniques with DCA [17], they can be readily 
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integrated with any other clustering-based ROM for efficient multiscale modeling with accurate 

predictions of localized phenomena.  

1.3. Outline of the paper 

The remainder of the paper is organized as follows. In Section 2, we briefly review some 

background techniques. Our adaptive multiscale damage method is introduced in Section 3 and we 

demonstrate its efficiency and accuracy via numerical experiments in Section 4. The paper is 

concluded with some final remarks in Section 5.  

2. Background techniques 

The proposed reduced-order multiscale damage model relies on a few background techniques 

including homogenization theory, damage models, and time integration schemes which are briefly 

reviewed below.  

2.1. Multiscale modeling via first-order homogenization 

We use multiscale models to investigate the influence of microscale heterogeneity on the 

fracture behavior of macroscale components. Our multiscale model relies on the first-order 

computational homogenization (FOCH) method which assumes distinguishable macro and micro 

features. Specifically, the sizes of local material heterogeneity (𝑙μ) is assumed to be much smaller 

than the RVE size (𝑙m) which itself is presumed to be smaller than the macro-characteristic length 

(𝑙M), that is: 

μ m Ml l l   (1) 

where the subscripts ‘M’ and ‘m’ represent macroscale and microscale, respectively.  

Solutions of the macro- and micro-structures are coupled via the Hill-Mandel energy condition 

[29] which implies that the virtual internal work density at a macro IP equals the volume average 

of the virtual work of its associated RVE: 

m mM M

1
:δ : δ d


= 
 

S E S E   (2) 

where 𝐒M, 𝐄M, 𝐒m  and 𝐄m  are the macroscopic and microscopic stress and strain tensors, 

respectively. Ω and |Ω| represent the domain of microstructure and its volume. The symbol ‘:’ 

represents the double dot product that contracts a pair of repeated indices.    

The stress and strain tensors at either scale are computed through equilibrium equations. The 

equilibrium equations for a macrostructure in the infinitesimal deformation framework are [30]: 

( )M M0 0M        + =  S X b 0 X   (3) 

( ) D
M M 0M                   =  u X u X   (4) 

( ) N
M M M 0M              =  S X n t X   (5) 

where 𝐮M is the unknown macro-displacement, �̅�M is the prescribed displacement on the Dirichlet 

boundary Γ0M
D , 𝐭̅M  represents the surface traction over the Neumann boundary Γ0M

N , and 𝐧M 

denotes the outward unit vector to the boundary of the undeformed macro-domain Ω0M. ∇0 is the 

gradient operator with respect to the undeformed configuration. 
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Similarly, the equilibrium equation in the microscale can be written as the following BVP: 

( )m 0 0m             =  0S x  x   (6) 

( ) N
m m m 0m            =  S x n t x   (7) 

where 𝐭̅m  is the prescribed surface traction per unit area on the boundary Γ0m
N  of reference 

microscale domain with the outward unit normal vector 𝐧m . According to the Hill-Mandel 

condition, macroscale and microscale equations are coupled by equating the macroscopic stress to 

the homogenized micro-stress of RVE and storing history-dependent state variables for continued 

analyses in the concurrent multiscale model. 

We assume the plastic behavior of the studied alloy system follows a rate-independent isotropic 

elasto-plastic constitutive law in the microscale as: 

el el

m

el pl

m m m

m m

pl pl

m m

m :

d

d




−





=

=

=

=





S  E

E E E

E E

E E

  (8) 

where ℂel  represents the fourth-order elasticity tensor. The total microscopic strain (𝐄m ) is 

additively decomposed into the microscopic elastic strain (𝐄m
el) and plastic strain (𝐄m

pl
) where the 

values of the total and plastic strains are integrated by their increments (d𝐄m and d𝐄m
pl

) at each 

time step. The plastic state is defined by the yield condition 𝑓 as: 

 
m( , ) 0f f q= =S   (9) 

where 𝑞 is a history-dependent state variable. During plastic flow, the plastic strain increment ∆𝐄m
pl

 

is determined by the plastic flow rule as: 

  pl

m

m

Q



 = 


E
S

  (10) 

where 𝜆 is the plastic multiplier and 𝑄 refers to the plastic potential. In this work, we use an 

associated flow rule where 𝑄 = 𝑓.   

2.2. Damage in ductile metals 

Damage occurs when excessively large loads are applied to materials whose loading-carrying 

capacity is reduced as a result of progressive degradation of the materials’ moduli. To model this 

degradation in a multiscale setting, we add damage to Equations (3)-(7). In particular, we adopt an 

isotropic continuum damage model which has two major components: an initiation criterion that 

predicts the onset of softening and an evolution law that traces the crack’s progression until 

rupture.   

We select the ductile criterion at either scale as the damage initiation metric which assumes the 

effective plastic strain (�̅�𝑑
𝑝𝑙

) at the onset of fracture is a function of stress states and strain rates. 

For simplicity, we assume �̅�𝑑
𝑝𝑙

 is a user-defined constant and damage is initiated when the 

following condition is met: 
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pl

pl

d

E
1

E
d =    (11) 

where 𝜔𝑑  is the damage initiation variable that increases monotonically in elasto-plastic 

deformations and �̅�𝑝𝑙 is the equivalent plastic strain. We note that ductile damage initiation can be 

used in conjunction with other damage initiation criteria. When multiple criteria are specified 

simultaneously, they are treated independently, and damage evolution starts if any criterion is met. 

Upon initiation, damage results in softening of the yield stress and degradation of the stiffness. 

Correspondingly, the constitutive equation for a damaged elasto-plastic metal is written as: 

  
( ) 0

0 el el el pl

1

: : ( )

D = −


= = −

S S

S E E E
  (12) 

where 𝐷 ∈ [0, 1] is the monotonically increasing damage evolution parameter and 𝐒0 is the stress 

tensor on a reference material that undergoes the same plastic deformation but in the absence of 

damage. Since the continuum damage is assumed as isotropic, 𝐷 is a scalar in Equation (12). If 

multiple evolution laws are specified, 𝐷  would capture the effects of all active damage 

mechanisms. For an anisotropic damage model, however, 𝐷 becomes a tensor.   

The evolution of 𝐷 can be specified as a function of equivalent plastic strain and state variables, 

e.g., as an exponential function [31] of �̅�𝑝𝑙  and a user-defined non-negative evolution rate 

parameter (𝛼) as: 

    
pl

pl pl pld
dpl

E
(E , ) 1 exp( (E E ))

E
D  = − − −   (13) 

This definition ensures that when �̅�𝑝𝑙 is sufficiently large compared to �̅�𝑑
𝑝𝑙

, the damage variable 

increases to one so that the stiffness is fully degraded, and the material is entirely ruptured.  

Once the maximum degradation is reached at a material point, a choice of removal of the 

ruptured elements from the computational mesh is enabled. Element deletion prevents further 

damage accumulation in localized regions and enhances computational efficiency by improving 

the condition number of damaged stiffness of the underlying algebraic systems.    

2.3. Mesh dependency control 

With fractures are formulated as strain softening by the isotropic continuum damage model in 

Equation (12), softening-induced non-positive definite stiffness causes the BVPs in Equation (3)-

(7) to be ill-conditioned with unstable convergence and negative wave speeds. In such a scenario, 

equilibrium solutions lose their objectivity with respect to mesh sizes and exhibit spurious mesh 

sensitivity, especially when using standard finite elements (FEs) of the first-order continuity. If 

not properly addressed, the progressive damage model in Equation (12) would result in unphysical 

material failures that are localized in a certain region with shrinking fracture energies upon mesh 

refinements [21]. As discussed below, we adopt two different approaches to control the mesh 

dependency on the macro and micro domains. 

2.3.1. Macroscale mesh dependency control by nonlocal functions  

When the damage model of Equation (12) is directly applied to the damage evolutions in 

Equation (13), macrostructures exhibit unphysical material softening in concentration regions 

where the equilibrium solutions strongly depend on the mesh. This pathological mesh dependency 
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restricts the fractured elements into an unphysical narrow damage band with a single layer of 

elements. This spurious mesh dependency can be alleviated by introducing the ‘fracture band 

width’ as a macroscale material characteristic length in a nonlocal damage model.  

We adopt an integral-type nonlocal damage model in Equation (14) where the nonlocal 

parameter of a macroscopic point involves the weighted averages of the damage parameters over 

a finite spatial neighborhood of the point under consideration:  

    
B

( , ) ( ) ( ) ( )D D d= −X X' X X' X' X'   (14) 

where �̂�(𝐗, 𝐗′)  is the nonlocal damage parameter at a macroscopic point 𝐗  surrounded by 

neighbor points 𝐗′ in a support neighborhood denoted by B, 𝐷(𝐗′) is the local damage parameter 

at 𝐗′, and 𝜔(‖𝐗 − 𝑿′‖) is the nonlocal weighting function. There is no unique way to define 

𝜔(‖𝐗 − 𝑿′‖) and in this study, we adopt a polynomial bell-shaped function [31] as: 

    

B

( )
( )

( ) ( )d










−
− =

−

X X'
X X'

X X' X'
  (15) 

    

2
2

2

0

4( )
( ) 1

l


−
− = −

X X'
X X'   (16) 

where the Macauley brackets 〈… 〉 represent a non-negative value defined as 〈𝑥〉 = max(0, 𝑥), and 

𝑙0 is the macroscale material characteristic parameter denoting an interaction radius, that is, the 

weighting effects diminish when ‖𝐗 − 𝐗′‖ > 𝑙0/2. Thus, in 3D models, the support domain B is 

a sphere with a radius of 𝑙0/2.    

The macroscale material characteristic length 𝑙0 determines the width of fracture bands whose 

value can be measured by high-fidelity numerical simulations using discrete fracture mechanics or 

via a dedicated experiment with high-resolution digit image correlation analyses. To check mesh 

independence in fracture analyses, element sizes are generally selected to be much smaller than 𝑙0 

and the post-peak damage responses are tracked to show convergence upon mesh refinement, 

which we demonstrate in Sections 4.1 and 4.2. 

2.3.2. Microscale mesh dependency control by fracture energy  

In the presence of fracture, microstructure responses are no longer properly represented by 

stress-strain relations since they cause damage models to lack objectivity to mesh choice and result 

in imaginary wave speeds amid damage progression. Using an arbitrary microscale characteristic 

length (𝑙1) in a microscale damage model, similar to the macroscopic counterpart (𝑙0) defined in 

Equation (16), helps to stabilize ill-posed strain-softening but the simultaneous applications of 𝑙0 

and 𝑙1 in a multiscale model is not physically realistic. 

To mitigate mesh dependency on microscopic damage models, the softening part of the 

constitutive law is converted from the stress-strain relation to a stress-displacement relation by an 

element characteristic length (𝑙𝑒). Then, the fracture energy (𝐺𝑓) is specified as the dissipated 

energy (after damage initiation) that opens a unit area of the crack as: 

      
pl pl
f f

pl
0

E
pl

E 0
E

u
pl

f e y yG l S d S du= =    (17) 

where 𝐺𝑓 is defined on each microscale IP with an 𝑙𝑒, and 𝑆𝑦 is the yield stress corresponding to 

�̅�𝑝𝑙. The equivalent plastic displacement �̅�𝑝𝑙 is the fracture work conjugate of 𝑆𝑦 in the fracture 



Computational Mechanics, special issue on machine learning theories, modeling, and applications to computational 

materials science (2022), doi.org/10.1007/s00466-023-02299-7. 

 

9 

 

evolution from damage initiation (marked with the effective plastic strain �̅�0
𝑝𝑙

 and zero plastic 

displacement) to the final rupture (represented by the effective plastic strain �̅�𝑓
𝑝𝑙

 and the fracture 

plastic displacement�̅�𝑓
𝑝𝑙

). For FEs with the first-order continuity, 𝑙𝑒 equals the length of a line 

across elements. 𝑙𝑒 can also be directly specified as a function of element topology or material 

orientation [32]. 

With the effective plastic strains converted to plastic displacements with associated elemental 

𝑙𝑒, the damage evolution is therefore defined based on the released energy during the damage 

propagation in an exponential form [32] of the plastic displacement as: 

      
0

1
1 exp( )

plu
pl

y

f

D S du
G

= − −    (18) 

where the damage variable approaches one only asymptotically at infinitely large plastic 

displacement. In practice, we set 𝐷 as one when dissipated energies exceed 0.99𝐺𝑓. We note that 

fracture directions are generally not known a priori and, as a result, the elements with high aspect 

ratios behave differently depending on the direction along which the crack occurs. Thus, 

continuum damage models typically prefer elements with an aspect ratio close to one. 

2.4. Convergence difficulty of implicit solvers  

Strain softening and stiffness degradation amid damage evolution cause serious convergence 

difficulties for implicit time integration schemes because the implicitly integrated algebraic 

systems exhibit singular or ill-conditioned stiffness matrices for materials with degraded moduli. 

To demonstrate this, consider a simple isotropic damage model whose constitutive equation can 

be integrated analytically [33] by the classic implicit backward-Euler integration scheme. The 

algorithmic tangent operator ℂn+1
alg.

 in the damage model at time step (𝑛 + 1) is written as [34]: 

  
pl

alg. el 0 0n+1 n+1 n n+1
n+1 1 n+1 n+1pl 3

n+1 n+1

S H E
(1 )

(E )
nD +

 −
 = − − 


S
S S

E
 (19) 

where E̅n+1
pl

, Sn+1 , 𝐒n+1
0 , Hn  are the equivalent plastic strain, equivalent stress, referenced 

(undamaged) stress tensor, and softening modulus, respectively (the subscripts denote the time 

step). Upon damage initiation, Hn becomes negative and hence ℂn+1
alg.

 loses its positive definiteness 

in some loading states. The non-positive definite ℂn+1
alg.

 causes the elemental stiffness matrix (𝐤n+1
e ) 

to be ill-conditioned with possible negative eigenvalues. As damaged elements agglomerate in 

certain strain-softening regions, negative eigenvalues enter the global stiffness matrix (𝐊n+1) via 

element assembly process:  

  
int

n+1 e T lg.
e en+1 n+1 1

n+1

: :A ( ) A ( )
e

a
n d+




= = = 
 

F
K k B B

u
 (20) 

where 𝐅n+1
int  and 𝐮n+1 are the internal forces and nodal displacements at time step (𝑛 + 1). Ae(… ) 

is the assembling operator and 𝐁 is the strain-displacement matrix evaluated within each element 

domain Ω𝑒 . So, the locally damaged elements cause the global stiffness matrix to become ill-

conditioned. Note that softening occurs not only in damage but also in plastic models, and in both 

cases, the condition number of the global stiffness matrix deteriorates. 
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The ill-conditioning of the global stiffness matrix reduces the efficiency of the Newton-

Raphson procedure. Specifically, when the algebraic system becomes singular in a certain step due 

to degraded moduli, the Newton-Raphson iteration halts before convergence. Solutions for 

improving implicit solvers’ convergence rates are based on, e.g., viscous regularization schemes 

[32] and continuation methods [35] that render the tangent stiffness to be positive-definite in 

sufficiently small steps. However, such remedies fail in many scenarios and the implicit schemes 

face severe convergence difficulty. To fundamentally resolve the softening-induced numerical 

instability, we develop an adaptive hybrid time integration scheme in the next section.  

3. Proposed adaptive reduced-order multiscale damage model  

Our approach has two novel ingredients: (1) an adaptive assembly-free impl-exp time 

integration scheme that automatically adjusts temporal step sizes amid nonlinear analyses without 

re-assembling global stiffness matrices of the underlying algebraic system, and (2) an adaptive 

clustering strategy which alters local spatial discretization to preserve solution accuracy in 

concentration regions. These temporal and spatial adaption procedures aim to efficiently improve 

simulation accuracy and they are discussed in Sections 3.1 and 3.2, respectively.    

3.1. Adaptive temporal reduction  

Time-dependent nonlinear analyses are often integrated via pure implicit schemes, e.g., the 

Newton-Raphson method, due to their high efficiency and unconditional stability. However, in 

strain-softening simulations, ill-conditioned algebraic systems with near-zero or negative tangent 

moduli often prevent iterative solutions from convergence even after many steps. To reduce the 

overall number of temporal steps, we adopt a proper time integration scheme with robust 

convergence property and improve it as explained below.   

3.1.1. Standard impl-exp scheme 

The impl-exp scheme [34,36] is a hybrid method that is robust and efficient in integrating 

softened constitutive equations. This method avoids the softening-induced numerical convergence 

issues discussed in Section 2.4 and its algorithm is demonstrated for the elasto-plasticity in Table 

1 and the ductile damage model in Table 2. 

The basic idea of the impl-exp scheme is to maintain the positive-definiteness of the algorithmic 

tangent operator by dividing constitutive integration into two stages. In the first stage, the plastic 

multiplier increment ∆�̃�𝑛+1 is explicitly extrapolated at time step (𝑛 + 1) from ∆𝜆𝑛 to compute an 

‘explicit’ stress �̃�n+1  which balances the equilibrium equation between internal and external 

forces. In the second stage, the ‘implicit’ stress 𝐒n+1 is obtained in terms of the current strain 𝐄n+1 

via the standard implicit backward Euler method. Then, the ‘implicit’ stress 𝐒n+1 is used in the 

next step to compute the trial stress for updating yield function, see Table 1. With impl-exp 

schemes, both tangent operators ℂ̃n+1
alg.

 are guaranteed to be positive-definite for the elasto-

plasticity and damage models in Table 1 and Table 2, respectively.  
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Table 1: Standard impl-exp scheme: Positive-definiteness of the algorithmic tangent operator is preserved by 

dividing constitutive integration into two stages. 

Inputs: ℂ𝑒𝑙 , ∆𝐄n+1, 𝐒n, 𝑞, 𝑄, ∆𝜆𝑛  

      Trial stress: 𝐒n+1
trial = 𝐒n + ℂel∆𝐄n+1 

      Yield criterion: 𝑓 = 𝑓𝑡𝑟𝑖𝑎𝑙(𝐒n+1
trial, 𝑞) 

      Implicit plastic strain increment: ∆𝐄n+1
𝐩𝐥

= ∆𝜆𝑛+1(𝜕𝑄/𝜕𝐒n+1) 

      Implicit stress: 𝐒n+1 = 𝐒n+1
trial − ℂ𝑒𝑙: ∆𝐄n+1

pl
 

      Explicit plastic strain: ∆�̃�𝑛+1 = (∆𝑡𝑛+1/∆𝑡𝑛)∆𝜆𝑛;  �̃�n+1
pl

= 𝐄n+1
pl

+ ∆�̃�𝑛+1(𝜕𝑄/𝜕�̃�n+1) 

      Explicit stress: �̃�n+1 = 𝐒n+1
trial − ℂ𝑒𝑙∆�̃�𝑛+1(𝜕𝑄/𝜕�̃�n+1) 

       

      Algorithmic tangent operator: 
ℂ̃𝑛+1
𝑎𝑙𝑔.

=
𝜕�̃�n+1
𝜕𝐄n+1

=

𝜕(ℂ𝑒𝑙(𝐄n+1 − 𝐄n
pl
) − ℂ𝑒𝑙∆�̃�𝑛+1

𝜕𝑄(�̃�n+1(𝐄n+1))

𝜕�̃�n+1
)

𝜕𝐄n+1
 

Outputs: ℂ̃𝑛+1
𝑎𝑙𝑔.

, �̃�n+1  

 

Table 2: Standard impl-exp scheme with damage:  It is assumed that the material behaves elasto-plastically as 

described in Table 1. 

Inputs: ℂel, 𝐄n+1
el   

      Effective stress: 𝐒n+1
0 = ℂel: 𝐄n+1 

      Internal variable: ∆�̃�𝑛+1 = (∆𝑡𝑛+1/∆𝑡𝑛)∆𝜆𝑛 

      Damage initiation criterion: 𝜔𝑑 = �̅�𝑛+1
𝑝𝑙

/�̅�𝑑
𝑝𝑙
= (�̅�𝑛

𝑝𝑙
+ ∆�̅�𝑛+1

𝑝𝑙
)/�̅�𝑑

𝑝𝑙
≥ 1 

      Damage parameter: �̃�𝑛+1 = �̃�𝑛+1(𝐷𝑛 , ∆�̃�𝑛+1) 

      Damage stress: �̃�n+1 = (1 − �̃�𝑛+1)𝐒n+1
0  

      Algorithmic tangent operator: ℂ̃𝑛+1
𝑎𝑙𝑔.

= 𝜕�̃�n+1/𝜕𝐄n+1 = (1 − �̃�𝑛+1)ℂ
el 

Outputs: ℂ̃𝑛+1
𝑎𝑙𝑔.

, �̃�n+1  

 

In an impl-exp scheme, the tangent operator is kept constant in a Newton step (as opposed to a 

pure implicit scheme,) which dramatically reduces the required iteration numbers within a step. 

However, since the tangent operator varies between steps, the global stiffness matrix must be re-

assembled at the first iteration of each Newton step. This repetitive reassembly results in large 

memory footprints and slows down the overall process. We address this issue in the next subsection 

with our new method.  

3.1.2. Adaptive assembly-free impl-exp scheme 

To improve the computational efficiency of the impl-exp scheme introduced in Section 3.1.1, 

we propose a novel adaptive assembly-free impl-exp (AAF-IE) scheme. Compared to the standard 

impl-exp, our approach is more efficient because it avoids the re-assembly of the underlying 

stiffness matrix in runtime and adaptively adjusts temporal steps to improve integration accuracy. 

The key idea is to estimate plastic strain tensors with explicit extrapolations (instead of expensive 

implicit estimators) while maintaining equilibrium conditions and satisfying constitutive 

equations. Specifically, in contrast to the standard impl-exp which updates ‘explicit’ state variables 
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with respect to a linearly extrapolated plastic multiplier increment ∆�̃�𝑛+1, we set the extrapolated 

state variables in AAF-IE to the plastic strain increment tensor, ∆�̃�n+1
pl

, as:  

    
pl trial el pl el pl pl

n+1 n+1 n+1 n+1 n n n+1 n+1

el el pl el pl

n+1 n n+1

( ) : : ( )

: : :

 = −  = − + −

= − − 

S E S E E E E E

E E E
 (21) 

    pl pln+1
n+1 n

n

Δt

Δt
 = E E   (22) 

where ∆𝐄n
pl is the converged implicit plastic strain tensor increment from the previous time step 

(𝑛). The algorithmic tangent operator for the elasto-plasticity model is simplified as: 

    
pl el el pl el pl

lg. eln+1 n+1 n+1 n n+1
1

n+1 n+1

( ) ( : : : )a

n+

   − − 
= = =

 

S E E E E

E E
 (23) 

The advantage of the Equation (23) comes from the fact that the tangent operator ℂ̃n+1
alg.

 is now 

independent of the plastic potential 𝑄(�̃�n+1(𝐄n+1)), see the standard impl-exp in Table 1, and it 

always equals to the elastic tangent modulus ℂel during the entire analysis. As a result, the global 

stiffness matrix (𝐊n+1) of the elasto-plastic system in Equation (20) is only assembled once in the 

offline stage where its Cholesky decomposition matrices are calculated and then stored for 

repeated usage in runtime. The constant stiffness matrix avoids re-assembly and therefore 

significantly reduces memory usage while improving efficiency.  

As the material becomes damaged, �̃�𝑛+1 and ℂ̃n+1
alg.

 still depend on the linearly extrapolated 

∆�̃�𝑛+1 which itself is a function of the time step increments (∆𝑡𝑛 and ∆𝑡𝑛+1) and the implicitly 

converged ∆𝜆𝑛. However, since softening is highly localized in a strain-softening zone with a 

limited number of fractured elements (compared to the whole mesh), the element stiffness matrices 

of the damaged elements can be incrementally updated in the global stiffness matrix as: 

d

n+1 n n+1= +K K K   (24) 

where ∆𝐊n+1
d  corresponds to the entries with damaged material properties. This incremental 

assembly technique avoids overall re-assembly and significantly reduces memory footprints. 

A major limitation of the standard impl-exp is the accuracy loss incurred by large time steps 

[34]. The accuracy loss comes from the mismatch between the linearly extrapolated state variables 

and their real values, especially upon transitioning between elasticity and plasticity where the state 

variables (e.g., effective plastic strain increments) change abruptly. Thus, it is recommended to 

use sufficiently small steps to reduce the extrapolation error (like explicit integration schemes) 

which increases the computational expenses.  

Noting that large time steps can be used at non-critical moments when material properties 

change smoothly, we introduce an adaptive integrator in the framework of an assembly-free impl-

exp scheme to automatically adjust the time steps. At the arbitrary time instance 𝑡𝑛+1, the explicitly 

extrapolated increment of the plastic strain tensor can be expressed as its implicit counterpart from 

the last step: 

pl pl pl pl1
n+1 n+1 n n

n

n

t

t

+
 = − = 


E E E E   (25) 

The Taylor series expansion of the implicit plastic strain at 𝑡𝑛−1 is: 
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pl pl

n-1 n

pl pl pl 2 pl 3 4

n n n n

( )

1 1
( ) ( ) (( ) )

2 6

n n

n n n n

t t

t t t t

= − 

= −  +  −  + 

E E

E E E E
 (26) 

where �̇�n
pl

, �̈�n
pl

 and 𝐄n
pl

 are the first, second, and third-order time derivatives at the time-step 𝑛. 

The implicit plastic strain increment is then expressed as: 

   

pl pl pl

n n n-1

pl pl 2 pl 3 4

n n n

1 1
( ) ( ) (( ) )

2 6
n n n nt t t t

 = −

=  −  +  + 

E E E

E E E
 (27) 

By substituting Equation (27) to (25) and assuming ∆𝑡𝑛+1 = ∆𝑡𝑛, we arrive at the expansion of 

the extrapolated increment ∆�̃�n+1
pl

 at time-step 𝑛 as: 

   pl pl pl 2 pl 3 4

n+1 n 1 n 1 n 1 1

1 1
( ) ( ) (( ) )

2 6
n n n nt t t t+ + + + =  −  +  + E E E E  (28) 

To compare the explicit solution with the implicit one, we expand the implicitly integrated 

increment ∆𝐄n+1
pl

 at time-step 𝑛 via Taylor series: 

   

pl pl pl

n+1 n+1 n

pl pl 2 pl 3 4

n 1 n 1 n 1 1

1 1
( ) ( ) (( ) )

2 6
n n n nt t t t+ + + +

 = −

=  +  +  + 

E E E

E E E
 (29) 

By subtracting Equation (29) from (28), we identify the error between the implicit solution and 

the assembly-free impl-exp as: 

   

pl pl pl pl pl pl

n+1 n+1 n n+1 n n+1

pl 2 4

n 1 1

( ) ( )

( ) (( ) )n nt t+ +

− = +  − + 

= −  + 

E E E E E E

E
  (30) 

We create an error bound so that the extrapolated error (𝑒) is bounded for all IPs 𝐗 ∈ Ω: 

   
pl pl ref

n+1 n+1
max

( ) ( ) ξEe = − X E E X   (31) 

where ξ is the user-defined tolerance with respect to a model-dependent reference value Eref and 

|𝑥1, 𝑥2, … |max = max(|𝑥1|, |𝑥2|, … ).  We now substitute Equation (30) into (31) and drop the 

high-order term to arrive at the error upper bound: 

   
pl 2 4 2 pl ref

n 1 1 1 nmax max
( ) (( ) ) ( ) ξEn n ne t t t+ + += −  +   E E  (32) 

To obtain the second-order time derivative of the plastic strain, we expand its first-order 

derivative at time steps 𝑛 and 𝑛 − 1 as:  

   

pl pl pl
pl n n-1 n
n

n n

pl pl pl
pl n-1 n-2 n-1
n-1

n-1 n-1

pl pl pl pl
pl n n-1 n n-1
n

n n n n-1

1
( )

t t

t t

t t t t

 − 
= =

 
 − 

= =
 

 −  
 = = −

   

E E E
E

E E E
E

E E E E
E

  (33) 
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We now acquire the extrapolation error by substituting Equation (33) into (32): 

   
2 pl pl

ref1 n n-1

1 max

( )
( ) ξEn

n n n

t
e

t t t

+

−

  
− 

  

E E
  (34) 

We compute the maximum time step at any integration point 𝐗 while keeping the extrapolation 

error in bound by equating the error to the bound as: 

   
ref

1 pl pl

n n-1

1 max

ξE
Δ ( )

( ) ( )

n
n

n n

t
t

t t

+

−




 
−

 

X
E E

X

  (35) 

To bound the error in the entire domain, we set the critical step size as the minimum value of 

critical step sizes across all the points at the current time step (𝑛 + 1), that is: 

    
ref

.

1 pl pl

n n-1

1 max

ξE
Δ MIN

( ) ( )

cri n
n

n n

t
t

t t

+


−


=

 
−

 

X E E
X

  (36) 

Equation (36) provides the critical time step in our framework. We point out that ∆𝑡𝑛+1
𝑐𝑟𝑖.  depends 

not only on the previous time increments (∆𝑡𝑛 and ∆𝑡𝑛−1) but also on the (implicit) plastic strain 

increments (∆𝐄n
pl

 and ∆𝐄n−1
pl

) from the last two steps. Specifically, if the material property 

advances smoothly in its previous two steps, the values of plastic strain increments are close and, 

therefore, ∆𝑡𝑛+1
𝑐𝑟𝑖.  takes on a large value. In contrast, if the properties change abruptly (e.g., from 

elasticity to plasticity or vice versa), the difference between the previous two plastic strain 

increments is large and ∆𝑡𝑛+1
𝑐𝑟𝑖.  is reduced accordingly. Equation (36) can be further simplified as: 

    
. ref

1
1 pl pl

0 n n-1 max

Δ ξE
MIN

( ) ( )

cri

n
n n

t
t

t
 +

+


=  
  −X E E X

 (37) 

where 𝛾𝑛+1 is the ratio of time increments between the critical current time step and the (user-

defined) initial step ∆𝑡0. This simplification assumes the time increments for the last two steps are 

approximately the same (∆𝑡𝑛 ≈ ∆𝑡𝑛−1), and their slight difference does not affect the step size at 

the current time point (𝑡𝑛+1). 

3.2. Adaptive spatial reduction  

In addition to the adaptive temporal reduction discussed in Section 3.1, we develop an adaptive 

clustering-based spatial discretization method for our ROM. For any clustering-based ROM, 

domain decomposition generally converts the problem domain from sufficiently fine discretization 

(e.g., regularly shaped voxel grids from a computed tomography reconstruction or free meshes 

from a discretization module) into a set of interactive clusters with different shapes and sizes. Since 

the number of clusters is typically much smaller than the elements in the original discretization, 

the number of unknown variables is significantly reduced. 

Clustering is an unsupervised learning technique that groups similar data points. Example 

clustering methods include k-means learning [37], affinity propagation [38], agglomerative 

clustering [39], and spectral clustering [40]. In this work, we use the k-means clustering technique 

which, similar to other methods, classifies mesh elements into different groups based on their 
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feature values. The set of these features greatly affects the distinct clustering results. For example, 

a position-based clustering for grouping a total number of 𝑛𝑒 elements in a 3D mesh uses the X, 

Y, and Z coordinates of each element’s geometric center as features, see Table 3.  

Table 3: Position-based clustering data: Elements are grouped in the k-means clustering by the 3D coordinates of 

their geometric centers.   

 Features 𝝋 = [𝜑1, 𝜑2, … , 𝜑𝑛𝑓]
𝑇
 

Data points 𝜻 = [𝜁1, 𝜁2, … , 𝜁𝑛𝑒]
𝑇  𝜑1 = X 𝜑2 = Y 𝜑3 = Z 

𝜁1 = FE1 X1 Y1 Z1 

𝜁2 = FE2 X2 Y2 Z2 

… … … … 

𝜁ne = FEne Xne Yne Zne 

 

In k-means clustering, cluster seeds1 are first randomly scattered in the feature space. Then, 

each element is iteratively assigned to the cluster whose center (i.e., mean of its members) is closest 

to that element. During the assignment, the cluster means are automatically updated to minimize 

within-cluster variances by solving the following optimization problem:  

 
2

1

argmin
I

k

n I

I n C= 

= −
C

C φ φ   (38) 

where 𝑪  refers to the created cluster centers 𝑪 = {𝐶1, 𝐶2, … , 𝐶𝑘} . The variables 𝝋𝑛  and �̅�𝐼 

represent the 𝑛𝑡ℎ element’s feature and the feature mean of the 𝐼𝑡ℎ cluster, respectively.   

Naïve position-based clustering is a static spatial decomposition that is created once in an 

offline stage. It does not alter during runtime and results in a set of uniformly distributed material 

clusters with similar sizes (see [17] and Appendix A for more details). Position-based clustering 

may lose its data compression efficiency in the presence of nonlinear strain-softening with 

significant localizations. Effective clustering in such cases requires dense discretization over 

regions with steep gradients which can arise anywhere in the domain during the deformation (recall 

that the strains are constant in a cluster so capturing high gradients relies on having small clusters).  

To accurately capture the softening-induced localizations in clustering, we propose a novel 

adaptive clustering strategy that consists of a static stage and a dynamic stage which are described 

in Sections 3.2.1 and 3.2.2, respectively. The implementation details of these two stages are 

provided in Algorithm 1. 

3.2.1. Offline static stress-informed clustering  

To assign more clusters to concentration regions in an RVE where large solution gradients exist, 

we propose a hierarchical clustering scheme that utilizes elemental elastic responses to guide the 

position-based clustering. This hierarchical scheme is used only once in the offline stage of our 

ROM and has two levels which firstly groups elements with the similar elastic response and then 

decomposes each group into some clusters2. The rationale behind using materials’ elastic behaviors 

in clustering is that they are highly correlated with plastic responses. For instance, a highly stressed 

material point during elastic reaction is likely to obtain large plastic strains and accumulate strain 
 

1 The user chooses the number of seeds. 
2 While in both levels of our approach we are agglomerating elements, for clarity we reserve the terms group and 

cluster for the first and second levels, respectively.  



Computational Mechanics, special issue on machine learning theories, modeling, and applications to computational 

materials science (2022), doi.org/10.1007/s00466-023-02299-7. 

 

16 

 

concentrations during plastic deformation. Hence, our contribution in this section is the 

development of a hierarchical clustering scheme that creates more clusters in critical regions 

identified by elastic stress responses. 

At the first level, to obtain the scalar elastic stress response at each element we begin by 

applying a set of six orthogonal loads to the RVE. In each of the six cases, we deform the RVE by 

a homogeneous elastic macroscopic strain tensor and then calculate the microscale Von-Mises 

stress at each element’s center. Next, we condense the vector containing the six elemental Von-

Mises stresses (one from each load case) into a scalar via: 

51 2 3 4 6 2
[ ,  ,  ,  ,  ,  ]n n n n n n nS S S S S S S=   (39) 

where 𝑆𝑘
𝑛, (𝑘 = 1,… , 6)is the Von-Mises stress at the 𝑛𝑡ℎ element when the RVE is subject to the 

𝑘𝑡ℎ orthogonal load and 𝑆𝑛 is the L2-norm of these stresses representing the local stress intensity 

at an FE in the deformed RVE. The format of the resulting dataset for the stress intensity is 

demonstrated in Table 4 for a 3D RVE whose mesh has 𝑛𝑒 elements.  

Table 4: Stress-based clustering data: FEs are agglomerated via k-means clustering by their stress intensity values.   

Data points 𝜻 = [𝜁1, 𝜁2, … , 𝜁𝑛𝑒]
𝑇  Feature 𝜑 = 𝑆𝑛 

𝜁1 = FE1 𝑆1 

𝜁2 = FE2 𝑆2 

… … 

𝜁ne = FEne 𝑆ne 

 

Once the dataset of stress intensities is built, we start to divide the elements of a meshed RVE 

into multiple groups (the number of groups is chosen a priori) where we assume that the elements 

in a group have similar stress intensity and that each group has approximately the same number of 

elements. We note that the elements in the same group can be anywhere in the RVE, i.e., a group 

can be topologically disconnected, see Figure 2.  

After the groups are constructed, we then decompose each of them into multiple clusters where 

we assign more clusters to groups with higher stress intensities. That is, the second level of our 

hierarchical clustering approach aims to selectively decompose the groups such that concentration 

regions (marked with higher stress intensities) are discretized with more clusters. For illustration, 

consider Figure 2 where the elements in a generic RVE are segmented into five groups where the 

groups with higher stress intensities are decomposed with more clusters, and as a result, high 

stress-induced local phenomena in these groups can be captured more accurately. 
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Figure 2 Schematic 2D illustration of the offline stress-informed hierarchical clustering: (a) A generic 2D RVE 

is discretized with 5000 triangle elements. This RVE contains three circular pores with radii of 20 μm, 15 μm, and 5 

μm. (b) Element stress intensities are computed via offline orthogonal loads where intensity values are scaled to [0, 

1] to aim in visualization. (c) RVE elements are firstly agglomerated into five groups based on elemental intensity 

values where each group has 1000 elements. The intensity monotonically increases from group 1 to group 5. (d) 

Elements are then classified into a total of 100 clusters where the groups 1, 2, 3, 4, and 5 contain 10, 15, 20, 25, and 

30 clusters, respectively.       

We introduce the clustering split factor (𝑠𝑓), to better control the number of clusters in each 

group. Specifically, we first sort the groups in an ascending order based on their stress intensity 

values. Then, we compute the number of clusters in a group via a power function whose exponent 

is 𝑠𝑓:  

   

1

i

i g

i

gcl cl

g N

g

i

N N



=

=



  (40) 

   

f

i

i

s

g

g

g

I

N


 
=   
 

  (41) 

where 𝑁𝑔𝑖
𝑐𝑙 is the number of clusters in the group 𝑔𝑖, 𝜃𝑔𝑖 is the fraction of total clusters assigned to 

𝑔𝑖, 𝐼𝑔𝑖 is the group’s sorted index in the ascending order of stress intensities, 𝑁𝑐𝑙 is the prescribed 

total number of clusters, and 𝑁𝑔 is the total number of groups. If the computed 𝑁𝑔𝑖
𝑐𝑙 is decimal, we 
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round it up to the nearest integer and adjust the number of clusters in other groups accordingly 

such that 𝑁𝑐𝑙 = ∑ 𝑁𝑔𝑖
𝑐𝑙𝑁𝑔

𝑖=1
.  

We note that 𝑠𝑓 is defined by the user and represents the contrast of cluster densities across the 

groups. This contrast is illustrated in Figure 3 where the cluster numbers per group are controlled 

by adjusting 𝑠𝑓. We observe that a large 𝑠𝑓 promotes increasing cluster numbers in groups with 

high-stress intensities. In contrast, a small 𝑠𝑓  lowers the sensitivity of cluster density to stress 

intensity. Specifically, when 𝑠𝑓 = 0 the numbers of clusters in each group are the same, and when 

𝑠𝑓 > 0  more clusters are generated in groups with higher average intensity values. Also observing 

that an excessively large split factor can dramatically reduce clusters in the groups with low-stress 

intensities. For example, when 𝑠𝑓 = 10 most clusters are created in the group with the highest 

intensity, and many groups with low intensities only contain one cluster. One cluster cannot 

capture solution gradients, and if local phenomena occur in those regions during the online stage 

(overlooked in offline elastic tests), the lack of sufficient clusters will result in dramatic local 

inaccuracy. Therefore, we do not recommend large 𝑠𝑓 and we set the default value to 1.0 which 

makes the number of clusters in each group to be linearly proportional to the sorting index of stress 

intensities. We illustrate the effects of 𝑠𝑓 on the accuracy of our ROM in Section 4.2.   

 

Figure 3 Effects of split factor: The numbers of clusters in groups with high-stress intensities (marked by high sorted 

indices) rapidly increase as a positive 𝑠𝑓 grows. In contrast, when n is negative, more clusters are assigned to non-

critical groups with smaller intensity values. This figure is generated by distributing 100 clusters between five groups.  

We point out that the total number of clusters, 𝑁𝑐𝑙, is determined by the user and then they are 

distributed across the groups by Equation (40). If 𝑁𝑐𝑙 is too small, too few clusters in a group may 

not sufficiently represent sharp solution gradients in a group. Hence, we require the computed 

cluster number from Equation (40) to be at least as large as 𝑁𝑔𝑖
𝐶𝑙∗ which is the smallest number that 

well-behaved clustering requires, that is: 

   *max( ,  )
i i i

cl cl Cl

g g gN N N=   (42) 

There are multiple techniques to compute 𝑁𝑔𝑖
𝐶𝑙∗ including gap statistics [41], elbow method [42], 

Silhouette coefficient [43], and Calinski-Harabasz index [44]. We adopt the Calinski-Harabasz 

index in this work which is computed as: 
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where 𝐶𝐻𝑘  is the Calinski-Harabasz index of 𝑘  clusters, 𝑉𝑏  is the overall between-cluster 

variance, 𝑉𝑤 is the overall within-cluster variance, and 𝑁𝑒𝑙𝑒𝑚
𝑔𝑖  is the number of elements in the 𝑖𝑡ℎ 

group. The overall between-cluster variance and the overall within-cluster variance are defined as: 
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where 𝑁𝑒𝑙𝑒𝑚

𝑐𝑙𝑗
  is the number of elements in the 𝑗𝑡ℎ  cluster of the 𝑖𝑡ℎ  group and 𝑚𝑗  denotes the 

centroid of the 𝑗𝑡ℎ cluster. 𝑚 and 𝑚𝑒 are the overall mean of feature values for all elements in the 

𝑖𝑡ℎ group and feature of one element, respectively. Since a good clustering has a large between-

cluster variance and a small within-cluster variance, i.e., a large Calinski-Harabasz index value, 

the optimal cluster number for the 𝑖𝑡ℎ  group can be determined by the following optimization 

problem: 

     * argmax( )
i

Cl

g k
k

N CH=   (46) 

where the applied cluster number for the 𝑖𝑡ℎ group in k-means clustering is obtained by comparing 

𝑁𝑔𝑖
𝐶𝑙∗ with 𝑁𝑔𝑖

𝑐𝑙, see Equations (40) and (42).  

The hierarchical clustering is performed once in the offline stage of our ROM. In the next 

section, we augment this static offline clustering with a dynamic counterpart that evolves with 

iterative solutions of the nonlinear equilibrium equations of plasticity and damage. 

3.2.2. Online dynamic clustering  

We propose an online dynamic spatial decomposition method to accommodate the evolution of 

equilibrium equations during the initiation and propagation of strain hardening and softening. The 

dynamic method augments the static offline clustering of Section 3.2.1 with online refinements 

over critical regions in an RVE as it is deformed. In a multiscale simulation, the dynamic clustering 

is performed for all the RVEs associated with the macro-IPs.  

While an RVE is deformed, we check a dynamic clustering initiation condition at each load 

increment. If the condition is not met, we solve the micro-equilibrium equations based on the 

existing clustering. Otherwise, we activate the dynamic refinement and calculate an error indicator 

that selects the “parent” clusters that must be decomposed into multiple “children” clusters. This 

decomposition relies on a remeshing procedure for dividing the clusters and transferring the state 

variables between the parent and children clusters. We stop the online decomposition once the 

total number of child clusters exceeds the user-defined total number of clusters (𝑁𝑢𝑠𝑒𝑟
𝑐𝑙 ), that is: 

    
1

1

n
cl cl
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N N
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=

   (47) 

where 𝑁𝑡
𝑐𝑙 is the number of new clusters created at time step 𝑡. Details of each step are discussed 

below.   
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In this work, we assume adaption starts and continues as long as the total number of existing 

clusters is less than the prescribed upper limit that is chosen by the user. If this condition is 

satisfied, we select the parent clusters that must be refined based on their equivalent plastic strain 

values. Specifically, we decompose the clusters whose plastic strains are either the highest in the 

RVE (spatial anomaly) or quite different from the plastic strains of the neighboring clusters (spatial 

discontinuity). We note that our adaption scheme is integrated with DCA [17] whose clusters are 

topologically connected (unlike the approach developed in [28]). Consequently, finding a cluster’s 

neighbors and computing its spatial discontinuity is simply done by checking the connectivity of 

agglomerated elements followed by comparing their equivalent plastic strains. 

The clusters with spatial anomalies are likely located in a strain softening region while those 

with spatial discontinuities tend to be at the boundary of damage bands surrounded by fractured 

and intact elements. We consider both cases as indicators of concentration regions which require 

higher degrees of interpolations (i.e., more cluster decomposition) for capturing solution gradients 

accurately.  

Compared to existing adaptive methods such as the one in [45], the novelty of our approach is 

that we augment the two spatial softening indicators discussed above with a temporal metric to 

choose the proper time steps for spatial refinements. Specifically, we systematically integrate our 

dynamic clustering with the new AAF-IE scheme proposed in Section 0 to identify the transition 

time of material properties between elasticity and plasticity. The identification of the critical time 

instances helps to improve fracture modeling since increasing spatial interpolations at material 

transition stages are crucial to predict accurate strain states that precede plasticity and damage.  

Once the parent clusters are selected at critical transition time instances, we refine them by re-

meshing which controls the number of children clusters created at each step. This re-meshing, 

similar to the h-adaptivity of FEM, decomposes a parent cluster into multiple small clusters while 

maintaining the original boundaries. Since the parent clusters are in concentration regions with 

high solution gradients, this decomposition improves the solution accuracy by enriching spatial 

interpolations.  

We divide each parent cluster by the position-based clustering which agglomerates material 

points based on their coordinates to multiple child clusters with topologically connected 

boundaries. For simplicity, we assume each parent cluster is decomposed into two child clusters, 

and neither of the new clusters can be further divided. Furthermore, we use the AAF-IE metric in 

Equation (37) to approximate the number of clusters that must be added at the current time instance 

𝑡𝑛+1 as a function of the time increment ∆𝑡𝑛 and the plastic strain increments (∆𝐄n
pl

 and ∆𝐄n−1
pl

) 

from previous steps, that is: 

    
ref

1 0 1 0 pl pl

n n-1 max

ξE
/ MIN
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cl cl cl
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=  
 − X E E X

 (48) 

where 𝑁0
𝑐𝑙 is the prescribed number of new clusters when the adaption step starts.  

The underlying idea of Equation (48) is to have the number of new clusters be inversely 

proportional to the AAF-IE’s error that estimates the variation of material responses amid 

transitions. As a result, we provide the transition phase (when extrapolation errors are expected, 

see Section 3.1) with smaller time steps and finer spatial discretization. In Section 4.2 we 

demonstrate the advantage of dynamic clustering over a simple approach where a fixed number of 

clusters are added per load increment.  
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A major advantage of our dynamic clustering strategy is that parent and their child clusters are 

hierarchically related. That is, upon refinement, child clusters inherit the same history-dependent 

state variables from their parents and we only need to locally adjust the reduced stiffness matrix 

in DCA via the incremental assembly by Equation (24). The implementation details of our 

dynamic and static clustering methods are outlined in Algorithm 1. 

 

Algorithm 1 Structure of our adaptive clustering approach 
1: procedure Develop microscopic fully adaptive clusters for highly localized phenomena 
2:       ▷Offline stage: stress-informed static clustering 
3:       if 𝑡 ← 0       ▷At the initial time step  
4:             Read the microstructure’s FE mesh and material properties  
5:             Apply six orthogonal loadings via elastic macro-strains and compute stress norm for each element 
6:             Agglomerate micro-elements to groups based on element stress norm value   
7:             Calculate the number of cluster seeds in each group according to their average stress values 
8:             Check if the number of cluster seeds per group is optimal by the Calinski-Harabasz criterion 
9:             if Calinski-Harabasz criterion is satisfied, then 

10:                    Generate the static stress-informed clusters for each group by the optimal seed numbers  
11:             else 
12:                    Adjust group seed numbers and re-check Calinski-Harabasz criterion  
13:       end if 
14:       ▷Online stage: dynamic clustering       
15:       if 𝑡 > 0       ▷Increment the time steps in online computing 
16:             for j← 0, 𝑁 do      ▷Loop over 𝑁 load steps 
17:                   Read macroscopic deformation information 
18:                   Solve micro-equilibrium solutions  
19:                   Check clustering adaption criterion 
20:                   if clustering adaption is satisfied, then 
21:                          Identify target decomposing clusters via spatial error indicator 
22:                          Determine critical adaption time steps via temporal error indicator 
23:                   else 
24:                          Proceed to the next load step  
25:                   end if 
26:                   Estimate each group’s new cluster numbers via temporal error estimator 
28:                   Compare the accumulated new cluster number to the prescribed upper limit 
29:                   if the current cluster number < upper limit, then 
30:                          Decompose target clusters and generate new clusters 
31:                          Transfer state variables from target clusters to their child clusters 
32:                          Update reduced stiffness matrix on entries associated with cluster refinement 
33:                   else 
34:                          Proceed to the next load step  
35:                   end if 
36:             end for  
37:       end if 
38: end procedure 

4. Numerical experiments  

In this section, we study the effect of porosity on the softening behavior of metallic components 

made of aluminum alloy A356. We consider the alloy as the primary material phase and the pores 

as the secondary phase. Except for porosity, other polycrystalline microscopic features such as 

grain boundaries are out of the scope of this study. We perform the spatial and temporal adaptive 

reductions introduced in Sections 3.1 and 3.2 on the primary material phase in all micro-, macro-, 
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and multi-scale simulations. The values of elastic modulus (𝑀) and Poisson’s ratio (𝑣) of A356 

are given as: 

5.70e4 MPa,       0.33M v= =   (49) 

A356’s elastoplastic hardening behavior is assumed to be isotropic and follow an associated 

plastic flow rule with the Von-Mises yield surface defined as: 

( )Y

plS S E   (50) 

where 𝑆 is the Von-Mises equivalent stress and the yield stress 𝑆𝑌 is governed by a predefined 

hardening law that depends on the equivalent plastic strain �̅�𝑝𝑙. The material’s hardening behavior 

is assumed as piecewise linear as demonstrated in Figure 4. To model strain softening, the alloy is 

modeled as a ductile metal with the fracture strain (𝐸𝑓) and fracture energy (𝐺𝑓) given as: 

6.67e-2,       1.92E4 N/mf fE G= =   (51) 

 

Figure 4 Hardening behavior of A356: We use a piecewise linear hardening behavior. 

As discussed in Section 3, our ROM framework employs temporal and spatial reductions to 

accelerate damage simulations. Correspondingly, in Section 4.1, we study a macroscopic 3D plate 

to demonstrate the benefits of the proposed AAF-IE approach discussed in Section 3.1 which 

achieves temporal reduction by reducing required time steps in intricate nonlinear analyses. Next, 

in Section 4.2, we test the adaptive spatial clustering techniques discussed in Section 3.2 to deform 

3D microstructures under complex loading conditions. Finally, in Section 4.3 the two reduction 

techniques are integrated within the first-order computational homogenization scheme to quantify 

the effects of spatially varying micro-porosity on macro-component damage behaviors. In all 

experiments, the accuracy of the proposed ROM is verified against direct numerical simulations 

(DNS) based on FEM. 

The proposed method is implemented in Matlab. All macro- and micro-scale simulations in 

Sections 4.1 and 4.2 are conducted on a 64-bit Windows desktop with the following hardware: 

four Intel i5-8250U CPU cores running at 1.8 GHz with 16 GB installed RAM. The concurrent 

multiscale simulation in Section 4.3 is performed on a high-performance cluster with 30 CPU cores 

(AMD EPYC processor running at 4.1 GHz) and 192 GB RAM. 
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4.1. Macroscale experiments 

We test the AAF-IE method on the macroscale 3D plate shown in Figure 5 (a). Due to 

symmetry, we deform only one-quarter of the model by applying a Dirichlet boundary condition 

(�̅� = 0.8mm) on the top surface and symmetric boundary conditions on the left and bottom 

surfaces, see Figure 5(b). To demonstrate the efficiency of AAF-IE, we first consider an 

elastoplastic deformation with hardening but without fracture. To obtain a benchmark solution, we 

mesh the model with 6000 linear tetrahedron elements and compute the solution via an implicit 

scheme. The obtained equivalent plastic strain distribution is shown in Figure 5(c) where the 

elements with the highest strain values are observed near the surface of the middle hole. 

 

Figure 5 Macroscale model: (a) Geometry and the dimensions of the 3D plate which has a hole in its center. Due to 

symmetry, only the red dashed part is modeled. (b) Boundary conditions are applied to the studied model. (c) 

Distribution of the equivalent plastic strain after work hardening (no damage, obtained via DNS).  

The AAF-IE’s load-displacement response is demonstrated in Figure 6(a) where the implicit 

solution is included as a benchmark. Since the current state variable (increment of plastic strain 

tensor) in an impl-exp scheme is linearly extrapolated from its previous values, see Section 3.1, 

prediction accuracy is affected by its step sizes at material transition. In particular, the impl-exp 

scheme’s extrapolation errors are significant when using large steps in the transition. For example, 

in the constant-step assembly-free impl-exp (CAF-IE) schemes, decreasing the number of steps 

from 200 to 50 results in larger time steps and higher extrapolation errors, see Figure 6(a). On the 

contrary, the extrapolation error of our AAF-IE scheme is reasonably small even though we use 

much fewer time steps. This is because our adaptive schemes automatically adjust timestep sizes 

such that smaller steps are utilized in the transition of property phases while large steps are used 

at other non-critical times.   
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Figure 6 Accuracy and efficiency assessment of IE schemes: (a) Comparison of load-displacement responses for a 

strain-hardening simulation between the implicit solver, CAF-IE with different constant steps, and AAF-IE. (b) The 

computational time of each Newton step for different schemes. A close-up comparison of CAF-IE schemes is shown 

without other solutions.  

We note from Figure 6(a) that during the material transition phase fewer constant steps of CAF-

IE result in larger step sizes and, as a result, exhibit higher extrapolation errors (e.g., comparison 

of CAF-IE with 50 steps and 200 steps). With a larger extrapolation error, more iterations are 

required in CAF-IE towards convergence at each step which, in turn, results in higher 

computational time at each Newton step as shown in Figure 6(b). Comparatively, our AAF-IE 

adaptively reduces its step size to lower the required number of iterations and computational time 

per step. After the transition phase, extrapolation errors are greatly reduced such that fewer 

iterations and smaller computational time are required at each step. Comparatively, for the implicit 

scheme, its computational cost per iteration is much higher than the other schemes because it 

requires the underlying stiffness matrices to be re-assembled at every iteration.  

Note that the number of steps in CAF-IEs (i.e., 50, 100, 200 in Figure 6(b)) are prescribed by 

the user where smaller numbers result in longer per-step computational costs since the steps are 

larger and involve more iterations. Meanwhile, the number of steps in AAF-IE (i.e., 96) is 

automatically determined by the algorithm to achieve the same level of solution accuracy as the 

CAF-IE with 200 steps, see Figure 6(a). The reason AAF-IE needs fewer steps than CAF-IE is that 

AAF-IE can adjust its temporal discretization where steps are enlarged during non-critical time 

instances and, as a result, the number of steps decreases. 

We now demonstrate the performance of AAF-IE in the presence of softening by comparing it 

against two fracture simulations that use explicit and co-simulation schemes, see Figure 7(a). The 

explicit solver is conditionally stable but is quite slow since sufficiently small steps are required 

to ensure stability. The co-simulation approach applies the implicit and explicit solvers 

sequentially to simulate strain hardening and softening, respectively. It is more efficient than the 

pure explicit solver, but its efficiency depends on the fraction of deformation that includes 

softening.  

The load-displacement curves obtained from different methods are illustrated in Figure 7(a) 

where we observe that our AAF-IE and CAF-IE with 200 constant steps achieve very similar 

results. However, the solutions obtained via explicit and co-simulation methods indicate 
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significant fluctuations in both hardening and softening. Reducing such erroneous fluctuations 

often requires applying fictitious damping forces which can result in unphysical solutions if they 

are excessive and implemented improperly. In addition, it is noteworthy that our AAF-IE (i.e., 100 

steps) only requires half of the time steps as that of CAF-IE (i.e., 200 steps), indicating a dramatic 

temporal reduction.  

We compare the total computational time of the four different solvers in Figure 7(b) where we 

observe that CAF-IE and AAF-IE are significantly faster than the explicit and co-simulation 

procedures. This computational efficiency is primarily because both CAF-IE and AAF-IE are 

unconditionally stable and hence their enlarged steps reduce the overall simulation time. We also 

note that AAF-IE converges to the same solution as CAF-IE but with almost half of the steps and 

a 59% reduction in costs. Compared to the explicit solver widely applied in fracture mechanics, 

our AAF-IE scheme achieves a more accurate (smooth) solution with an acceleration factor of 

11.4. We, therefore, apply AAF-IE to the following studies. 

 

Figure 7 Fracture simulations via different solvers: (a) Comparison of load-displacement responses between 

explicit solver, co-simulation scheme, IE solver with constant steps, and our AAF-IE solver. (b) Comparison of total 

computational time between different solvers.  

We prevent the softening solutions from mesh dependency by applying a non-local function 

(see Section 2.3) to the macroscale model in Figure 5. Specifically, we assume the strain 

localization band has a width3 of 1.5 mm and then test for mesh independency by discretizing the 

model with four mesh levels and comparing the resulting load-displacement responses. As shown 

in Figure 8, the softening curves converge as the number of elements increases. With 13000 

elements, mesh independency is observed for both post-failure load-displacement responses and 

fracture energies (i.e., the area under the load-displacement curve after damage initiation). 

 
3 A more realistic softening bandwidth value is typically determined via experiments or high-fidelity simulations. 
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Figure 8 Mesh independency study on history variables: Load-displacement responses converge as the number of 

elements (h) increases. 

We can further verify mesh independency by comparing the equivalent plastic strain 

distributions and damage patterns across the four mesh levels, see Figure 9. As the number of 

elements increases in Figure 9(a)-(d), we observe similar strain localizations. In particular, the 

direction of the softening band in each plot is orthogonal to the direction of the applied Dirichlet 

boundary condition. This band marks the damaged elements and extends from the inner hole to 

the outer surface. During damage evolution, the elements inside the band accumulate significant 

plastic strain and so their damage variables possess much higher values than their surrounding 

elements, see Figure 9(e)-(h). This observation explains the striking similarity between the strain 

localization bands (top row) with the fracture bands (bottom row) in Figure 9.  

It is noteworthy that in Figure 9(e), the mesh is so coarse that the element sizes are almost the 

same as the prescribed fracture band width. In this scenario, the non-local function in Equation 

(14) has little effect and the fracture band contains one single layer of damaged elements. However, 

as discretization become increasingly finer in Figure 9(f)-(h), the non-local function achieves 

convergent softening solutions by averaging the damage variables of elements within the 

prescribed width of fracture bands. Across these cases, we also observe that multiple layers of 

damaged elements are contained within the fracture bands which indicates that the macroscale 

damage patterns are independent of mesh sizes and produce consistent fracture energies.  
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Figure 9 Macroscale mesh independency study of field variables: (a-d) Distributions of equivalent plastic strains 

which converge as the number of elements increases. (e-f) Damaged elements and the distributions of fracture bands 

are independent of the mesh. 

4.2. Microscale experiments 

In this section, we integrate the temporal and spatial adaption techniques into our ROM whose 

performance is then tested on various porous microstructures. In all experiments, microscale pores 

are modeled as prolate ellipsoids with two identical minor axes. We use the following four 

descriptors to characterize the morphologies and spatial distribution of pores in a microstructure: 

pore volume fraction (𝑉𝑓), number of pores (𝑁𝑝), aspect ratio between major and minor axes (𝐴𝑟), 

and the average spatial distance between the two nearest pores (�̅�𝑑, units in µm). In addition, we 

simulate the microscale damage evolutions via the stabilized micro-damage model proposed in 

[31] (see also Appendix B). 

4.2.1. Effect of different clustering methods 

In this experiment, we apply our ROM to the microstructure in Figure 10(a) which has two 

identical spherical pores located on the neutral z-plane. The dimensions of the microstructure’s 

cross-section at the neutral z-plane are shown in Figure 10(b). Figure 10(c) shows the distribution 

of the equivalent plastic strain obtained via DNS (FEM with 33000 elements) when this 

microstructure is subject to the macroscopic deformation gradient in Equation (52). 
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Figure 10 A simple 3D microstructure with two pores: (a) The microstructure contains two identical spherical 

pores on the neutral z-plane. (b) Dimension of the microstructure (on the neutral z-plane). (c) Distribution of the 

equivalent plastic strain via DNS. 
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We start by checking the sensitivity of the microscale damage solutions to mesh size in DNS. 

To this end, we discretize the microstructure by four different meshes which have 2000, 8000, 

15000, and 33000 elements. By comparing their homogenized stress-strain responses in Figure 

11(a), we find that the microscale mesh dependency is well controlled by using the fracture energy-

constrained microscale damage model (see Section 2.3.2 and Appendix B). Specifically, as the 

number of elements increases, the effective responses converge to the solution with 33000 

elements. To emphasize the importance of the prescribed fracture energy on damage responses, 

we add two curves in Figure 11 that correspond to a simulation with larger fracture energy (𝐺𝑓
∗ =

1.92𝑒6N/m), see Equation (51) for 𝐺𝑓. As these curves indicate, the post-damage behavior and 

fracture energy are quite sensitive to the prescribed 𝐺𝑓 . Particularly, a larger fracture energy 

enables material points to withstand higher external loads before fracture.   

We now compare DNS with our ROM with the position-based clustering. The results are 

provided in Figure 11(b) and indicate that as the number of clusters increases, the predicted 

ultimate tensile strength (UTS) and fracture toughness approach to those of DNS. Specifically, 

with 1600 clusters, ROM’s homogenized response is identical to that of the DNS. It is noteworthy 

that the number of clusters represents the levels of spatial discretizations. A small cluster number 

generally results in coarse discretization with diffusive (low) plastic strain fields at each cluster. 

As the magnitude of the local plastic strain is smaller than DNS, ROMs exhibit delayed fracture 

initiations, higher UTS, and larger material toughness. This delayed damage response is gradually 

resolved as we increase cluster numbers. We also note that the ROM solutions are obtained by the 

microscale damage model (see Appendix B) which uses the same 𝐺𝑓 as in DNS. Similar to above, 

the ROM with a larger fracture energy 𝐺𝑓
∗ is able to endure higher macro-strain before softening, 

and thus exhibit delayed damage behavior. 
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Figure 11 Homogenized results by DNS and ROM: (a) Mesh independency study in DNS (h: number of elements) 

where the evolution of the damage variable is controlled by fracture energy 𝐺𝑓. Fracture behaves very distinctively 

when using 𝐺𝑓
∗. (b) Results of ROM homogenizations via a position-based clustering (k: number of clusters) where 

the impacts of 𝐺𝑓 is demonstrated by providing the curve corresponding to 𝐺𝑓
∗ for k=400.  

We next demonstrate the efficacy of the stress-informed clustering by preprocessing the same 

RVE with six offline orthogonal loads as discussed in Section 3.2.1. The resulting Von-Mises 

stresses are used to compute the elemental stress intensity scalar whose spatial distribution is 

demonstrated in Figure 12(a). Following our hierarchical approach, we divide the elements into 

three groups where each group has approximately the same number of elements, see Figure 12(b). 

We choose three different values for the total number of clusters (i.e., 𝑘 = 400, 800,and 1600) 

and then follow the procedures outlined in Section 3.2.1 to assign these clusters to the three groups. 

After hierarchical clustering (which is in the offline stage and done only once), we predict the 

fracture behavior in the online stage via our ROM. The results are summarized in Figure 12(c) and 

indicate that, with the same number of clusters, stress-informed clustering provides higher 

accuracy than the naïve position-based clustering in Figure 11(b). Specifically, in Figure 12(c), we 

note that when the number of clusters increases to 800, the ROM’s solution converges to that of 

DNS.  

The clustering split factor in Equation (40) is an important parameter that affects the results of 

our hierarchical clustering. To demonstrate its impacts, we compare the solutions of ROMs with 

the same 400 clusters but different values of 𝑠𝑓 in Figure 13. As discussed in Section 3.2.1, a 

positive 𝑠𝑓 promotes more clusters in the groups with high stress intensities, while a negative 𝑠𝑓 

works oppositely. For instance, 𝑠𝑓 = 1.0 results in  67, 133, and 200 clusters in groups 1, 2, and 3, 

respectively, while 𝑠𝑓 = −1.0  genrates 219, 109, and 72 clusters in those groups. Comparing the 

effective results from the two 𝑠𝑓, we observe a significant improvement when assigning more 

clusters in critical regions (𝑠𝑓 = 1.0). Therefore, we choose the default value of the heuristic split 

factor as 1.0 in our following tests. 
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Figure 12 Stress-informed clustering: (a) Distribution of stress intensities which is computed from the six 

orthogonal offline loadings. (b) Elements are agglomerated into three groups according to their stress intensities where 

each group has approximately the same number of elements. Both figures are plotted on the neutral z-plane of the 3D 

RVE in Figure 10(a). 

 

 

Figure 13 Effective responses of stress-informed clustering: Compared to position-based clustering results, stress-

informed solutions are improved using the same number of clusters (k=400). A higher value of clustering split factor 

in the stress-informed method results in more accurate solutions.  

To further distinguish the position-based and static stress-informed clusterings, we compare 

their cluster distributions and equivalent plastic strains in Figure 14 where the RVE is decomposed 

by 400 and 1600 clusters. Compared to the position-based method, the stress-informed approach 

allocates more clusters to the highly-stressed regions (around the bridge region connecting the two 

pores) and fewer clusters to the non-critical regions, compare the top row in Figure 14(a) and (c) 

with Figure 14(b) and (d). As a result of such distributions, the stress-informed method produces 

large (small) clusters in non-critical (stressed) regions which increase solution accuracy as small 

clusters enable capturing high gradients. This improvement is illustrated in the bottom row of 

Figure 14 where stress-informed clustering captures strain concentrations better than the position-

based counterpart. We note that, while the results based on these two clustering methods differ, 

they are both quite close to DNS results (e.g., compare the equivalent plastic strains in Figure 14 

with DNS results in Figure 10(c)). 
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Figure 14 Comparisons of clustering and effective plastic strains: The top and bottom rows indicate, respectively, 

the cluster distribution and the equivalent plastic strain field on the neutral z-plane.   

We now compare the performance of the above two clustering methods with the online dynamic 

approach (see Section 3.2.2) which aims to refine clustering as an RVE is deformed and softening 

appears. The first step of the dynamic approach is to determine the number of new clusters per 

time step. To this end, we use our error-control adaptive scheme for new cluster generations relying 

on the AAF-IE’s error metric in Equation (34), and we compare its performance against a naïve 

approach where the same number of new clusters are created per step. We set the initial and 

maximum numbers of clusters as 400 and 800, respectively. Both approaches use position-based 

clustering to create the initial 400 clusters but the additional 400 clusters are generated either by 

the error-controlled scheme or uniformly at each step.  

 In Figure 15(a), we illustrate the adaptive Newton step sizes on the left axis and find that they 

are reduced to their minimum at the fifth step when material properties transit from elasticity to 

plasticity. The steps gradually grow and plateau when most material points enter the plastic 

regimes. The number of new clusters added in each step is recorded on the right axis in Figure 

15(a) and indicates that, while the simple approach adds 8 clusters in each step (a total of 400 

additional clusters), the adaptive scheme adds all the new clusters during the first eight steps when 

phase transitions occur. 

We compare the effective strain-stress responses between the two approaches in Figure 15(b) 

where it is clear that the adaptive scheme provides higher accuracy. The primary reason behind 

this result is that in history-dependent deformations the adaptive scheme reduces the errors that 

appear early in the simulations (due to insufficient discretizations) and are accumulated as the 

deformation progresses.  

To further improve accuracy, we now use the fully adaptive strategy which leverages both the 

offline stress-informed clustering and the online dynamic clustering. As illustrated in Figure 15(b) 
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the solution of the fully adaptive clustering is more accurate than the previous two cases (all 

approaches have the same total number of clusters) and matches the solution obtained via DNS. 

 

Figure 15 Adaptive clustering with the error-control scheme: (a) Adaptive Newton step sizes and the number of 

new clusters per step. (b) Accuracy improvements of the error-control adaptive schemes on homogenization results 

where the fully adaptive approach is the combination of offline stress-informed clustering with an online error-

controlled adaptive counterpart.  

Hereafter, for brevity, we refer to the clusterings without error control, with error control, and 

with full adaption as clustering type-1, 2, and 3, respectively. In the top row of Figure 16, we plot 

the spatial distributions of the cluster centroids across the three methods. We observe that the new 

clusters from type-2 and especially type-3 methods are quite compact and largely located near pore 

surfaces. This behavior is because when material properties change abruptly during phase 

transition, AAF-IE adaptively reduces time steps and generates more clusters at each step. The 

new clusters are created around pore surfaces where high solution gradients appear. As shown in 

the bottom row of Figure 16, this compact clustering behavior improves the accuracy in capturing 

concentrations. 

We analyze the computational costs of type-3 (full adaption) clustering in Figure 17(a) where 

the offline and online stages consume 54.9 and 291.2 seconds, respectively. The online step time 

increases in early steps due to phase transition and then it drops as materials are yielded. The step 

time rises again in late steps due to damage evolutions where expensive microscopic damage 

models are activated to map effective responses between the reference microstructures used in 

damage modeling, see Appendix B.  

Finally, we compare the online computational costs of different clustering approaches against 

the clock time of DNS in Figure 17(b). We note that as the clustering types advance from the 

position-based method to offline stress-informed and fully-adaptive approaches, the required 

number of clusters for matching DNS decreases. In addition, compared to DNS which relies on 

the pure implicit scheme with re-assembling stiffness matrix at each iteration, our adaptive ROM 

with temporal reductions (by AAF-IE) and spatial reductions (via adaptive clustering) needs less 

than 3% computational time.   
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Figure 16 Different clustering approaches and effective plastic strain distributions: The top row indicates the 

spatial positions of the initial (offline) and dynamic (online) clusters across the three different clustering approaches. 

The plots in the bottom row illustrate the distribution of the effective plastic strains on the neutral z-plane for each of 

the approaches.  

 

 

Figure 17 Time analyses on the fully adaptive method: (a) Online solution time per step of the fully adaptive ROM. 

(b) Time comparisons between DNS and ROMs (h: number of elements, k: number of clusters) where different 

clustering approaches converge to the same DNS solutions.  

4.2.2. Effects of porosity volume fraction 

Porosity volume fraction significantly affects alloys’ failure behaviors [46]. To investigate its 

influence, we keep the positions and shapes of the two pores in the previous subsection identical 

but change their radii to 8 μm, 15 μm, 22 μm, and 30 μm. As shown in Figure 18(a), these four 
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cases correspond to microstructures with porosity volume fractions of 0.43%, 2.8%, 8.9%, and 

22.6%, respectively.  

We deform these four RVEs using the same macro-deformation gradient in Equation (52) and 

illustrate their effective stress-strain responses in Figure 18(b). We observe that with the increase 

of porosity volume fractions, the values of both toughness and UTS are significantly reduced. 

Specifically, the toughness and UTS of the microstructure with 22.6% porosity are only 79.2% 

and 80.9% of the one with 0.43% porosity. In addition, by comparing our fully adaptive ROM 

against DNS, we find our ROM achieves high fidelity with solution errors smaller than 3%, as 

listed in Table 5. 

 
Figure 18 Microstructures with different porosity volume fractions: (a) Morphologies of the microstructures with 

distinct pore radii (R) and descriptors [𝑉𝑓 , 𝑁𝑝,𝐴𝑟, �̅�𝑑]. (b) Homogenized stress and strain curves. 

Table 5: Accuracy analyses: Errors of ROMs’ toughness and UTS as compared to DNS. 

Pore radii (μm) Error of toughness (%) Error of UTS (%) 

8 0.34 1.24 

15 0.71 0.65 

22 2.27 2.02 

30 2.19 0.76 

 

4.2.3. Microstructure with complex morphology 

In this section, we test the performance of our ROM using the complex RVE in Figure 19(a) 

which is subject to the deformation gradient in Equation (52). The distributions of the equivalent 

plastic strain obtained by DNS and ROM with fully adaptive clustering are compared in Figure 

19(b-e). In this simulation, the ROM is accelerated by both temporal and spatial adaption 

techniques. We see that ROM’s solutions (strain distributions and localizations) converge to DNS 

as more clusters are used. However, compared to the RVE in Figure 10(a) which has relatively 

simple pore geometries, more clusters are needed in this test to capture local porosity morphology 

to ensure ROM’s solution converges to that of DNS.    
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Figure 19 Microstructure with complex pore morphology: (a) The studied microstructure and its pore descriptors 

[𝑉𝑓 , 𝑁𝑝,𝐴𝑟, �̅�𝑑 ]. (b) Distribution of equivalent plastic strains emulated via DNS. (c-e) Distributions of equivalent 

plastic strains are simulated by adaptive ROMs with different numbers of clusters where the first and second numbers 

indicate the initial and total number of clusters, respectively. 

The homogenized responses are compared between DNS and our ROM in Figure 20(a). When 

the initial number of clusters increases to 3200, the ROM’s stress-strain curve matches DNS in 

terms of both UTS and fracture toughness. To further investigate the discrepancy between DNS 

and ROM, we plot an error histogram in Figure 20(b) which measures the difference in the 

effective plastic strains between DNS and ROM at each element. It is observed that compared to 

fewer clusters (e.g., k=200->300), the ROMs with more clusters have lower prediction errors. 

Predicted toughness values of DNS and ROM are compared in Table 6 where we see that the error 

drops from 1.61% to 0.56% as the total cluster numbers increase from 300 to 3300. 

 
Figure 20 Accuracy analyses on effective stresses: (a) Comparisons of homogenization results between DNS and 

adaptive ROMs. (b) Element-to-element strain comparisons between DNS and ROMs.  

 

Table 6: Accuracy analyses on toughness: Comparison of material toughness simulated by DNS and ROMs for the 

studied microstructure in Figure 19(a). 

Method Toughness (MJ/mm3) Error (%) 

DNS 8.89 - 

ROM (k=200->300) 9.04 1.61% 

ROM (k=400->500) 9.01 1.29% 

ROM (k=800->900) 9.02 1.42% 

ROM (k=1600->1700) 8.95 0.61% 
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ROM (k=3200->3300) 8.84 0.56% 

Finally, we compare the computational costs of DNS and ROMs in Figure 21. We note that the 

offline costs are excluded from the time analyses since they are only performed once and their 

results can be reused for any other deformation. We add that with the highest adaptive cluster 

numbers (k=3200->3300), the ROM’s online time only accounts for about 1.3% of that of DNS; 

indicating an acceleration factor of 79.9 in this example.  

 
Figure 21 Time comparisons between DNS and our fully adaptive ROMs: Computational time is compared 

between DNS and ROMs with different numbers of adaptive clusters for the microstructure in Figure 19. 

4.3. Multiscale experiment 

In this section, we integrate the temporal and spatial adaption schemes with a FOCH-based 

concurrent multiscale framework to investigate the influence of micro-pores on the damage 

behavior of a macro component. Our multiscale study is performed on the same 3D plate model in 

Figure 5 which is now considered the macro-structure, see Figure 22(a). We assume the same 

Dirichlet boundary conditions are applied on the plate as in Figure 5(b). We also presume the plate 

consists of a monoscale region without any porosity and a multiscale region with microscopic 

pores, see Figure 22(b). To avoid softening-induced mesh sensitivity, we follow the mesh 

dependency study in Section 4.1 by discretizing the plate with 13000 linear tetrahedral elements 

and applying the non-local function with the fracture bandwidth of 1.5 mm. Under this 

discretization, the mono- and multiscale regions are meshed by 10560 and 2440 elements, 

respectively.  

To model local morphologies, we associate all macro-IPs in the multiscale region with spatially 

varying porous microstructures. We highlight four IPs in the multiscale region whose 

corresponding microstructures are visualized in Figure 22(c). Although the four RVEs share the 

same porosity volume fraction of 6.5%, their local morphologies are significantly different and 

vary from having one spherical pore to having multiple randomly dispersed overlapping pores. 

These four types of RVEs are randomly assigned to the macro-IPs. To ensure consistent fracture 

energies across scales [19], we enforce the sizes of RVEs to be the same as the sizes of macroscale 

elements.  

We mesh the microstructures of our multiscale model based on the complexity of their 

morphologies. Specifically, we mesh the four microstructures associated with macro-points A, B, 

C, and D with 15000, 78000, 103300, and 60400 elements, respectively. Correspondingly, our 

multiscale model is discretized with a total of roughly 156 million elements. Since the 
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computational cost of simulating such a model via DNS (FE2) is prohibitively high, we only utilize 

our ROM where we assign 300 adaptive clusters to the microstructure with a single spherical pore 

and 900 clusters to all other microstructures. 

The computational time of our concurrent multiscale simulation is about 59.4 hours. Based on 

the time comparison between DNS and ROMs in Sections 4.1 and 4.2, the estimated time for DNS 

(FE2) is more than 52519.9 hours (2188.3 days) given the same computational resources. That is, 

our method achieves an acceleration factor of 884.2 in this multiscale study. 

  

Figure 22 Multiscale model: (a) The macroscale component comprises a monoscale region without any porosity and 

a multiscale region containing micro-pores. (b) All integration points are assigned with porous microstructures in the 

multiscale region with four highlighted points. (c) The four points are assigned with different microstructures, 

respectively, where their pore descriptors are listed in the vectors [𝑉𝑓 , 𝑁𝑝, 𝐴𝑟 , �̅�𝑑]. 

We demonstrate the multiscale model’s load-displacement response in Figure 23(a) where the 

plate’s ultimate load carrying capacity is 3659.1 N at the displacement of 0.24 mm, which is an 

8.5% decline from its dense counterpart in Figure 8 where the plate ruptured at the displacement 

of 0.34 mm. We observe a localized fracture band that lies in the multiscale region and is oriented 

orthogonal to the Dirichlet boundaries in Figure 23(b). Two of the highlighted material points (B 

and C) are close to the fracture band while the other two points (A and D) are distant from the 

softening regions. The microscale equivalent plastic strain fields in the corresponding four RVEs 

are demonstrated in Figure 23(c) where we observe that microstructures B and C have accumulated 

much larger strains (note the axis scales). In each of these RVEs, we notice that high plastic strains 

concentrate in regions where pores are closely packed.  
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Figure 23 Results of the adaptive ROM: (a) Macroscale load-displacement responses. (b) Macroscale damage 

patterns with a fully developed fracture band connecting mid-hole to outer surfaces. (c) Microscale distributions of 

the equivalent plastic strains are associated with the four integration points on the macroscale model. 

5. Conclusion 

We introduce adaptive deflated clustering analysis in this paper which is a novel ROM that can 

simulate the damage behavior of metallic alloys with process-induced spatially varying 

microscopic pores. Our method is comprised of two new adaption strategies that are readily 

extensible for any clustering-based ROMs: a novel AAF-IE temporal adaption scheme and a new 

spatial clustering approach. Our AAF-IE not only alleviates softening materials’ instabilities by 

preserving the positive definiteness of the underlying algebraic system’s stiffness matrices, but 

also improves the overall efficiency by avoiding stiffness matrices’ re-assembly during the online 

process. In addition, our adaptive spatial discretization approach significantly improves the ROM’s 

prediction accuracy over critical regions by selectively modifying local interpolations. 

Specifically, the new clustering approach automatically adjusts cluster densities according to 

online solutions and resizes temporal steps to allocate more computational resources at crucial 

time instances. In our ROM we use a macroscale non-local function and a microscopic energy-

based damage formulation to resolve softening-induced pathological mesh dependencies and 

ensure fracture energy consistency across scales.  

We test the performance of our adaptive ROM via several numerical experiments. Our ROM 

results show significant improvements in robustness, efficiency, and local accuracy compared to 

DNS. We also apply the proposed method to a concurrent multiscale model to simulate the 

multiscale softening responses and indicate that components with spatially varying porosity 

defects have lower ultimate load-carrying capacity than their dense counterparts.  

Given the promising results from this work, our ROM can be extended to finite strains and 

extreme load conditions in the future. Another research direction of interest is to use our ROM as 
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an efficient database generator for complex material responses, followed by deep learning 

techniques to directly correlate materials’ local morphologies with their responses.   

Acknowledgments 

The authors thank the ACRC consortium members. Specifically, we appreciate Randy Beals 

from Magna International, and Chen Dai from VJ Technologies for providing us with the W-

profile plate samples and X-ray computed tomography scanning and data generation, respectively. 

Ramin Bostanabad also acknowledges NSF funding (award number OAC-2103708). 

Appendix A. Deflated clustering analysis 

A computationally efficient reduced-order multiscale model, named deflated clustering analysis 

(DCA), is proposed in [17] to simulate the elastoplastic behaviors of metallic alloys with process-

induced, spatially varying porosity defects. DCA relies on the clustering-based domain 

decomposition that universally applies to multiscale domains to accelerate the accurate 

computations of macroscale deformations and effective microscopic responses.  

Compared to the classic FE2 approach, which solves equilibrium equations on both macro- and 

micro-scales via computationally expensive FEM, the numerical advantage of DCA is to accelerate 

emulations by systematically agglomerating neighboring materials points to clusters and 

projecting solution variables into clustering-based deflation spaces for efficient nonlinear 

simulations, see Figure A.1. While both macro- and micro- computations follow general FEM 

formulation with displacements as unknown variables, the acceleration mechanisms on macro- and 

micro-domains are different. 

 
Figure A.1 Comparison of the classic multiscale method with DCA: (a) Classic FE2-based multiscale model 

assumes each macroscale material point is associated with a microstructure where the deformation gradients (𝐅) are 

passed from the macro- to micro-domains, and the effective stress (𝐒) and moduli (ℂ) are passed backward. (b) DCA 

speeds up nonlinear simulations on multiple scales via clustering-based data compression to systematically reduce 

unknown variables where different clusters are marked by distinct colors. 

Macroscale clustering is integrated with the deflation method to accelerate the conjugate 

gradient (CG) process of the underlying algebraic systems at each Newton iteration. The deflation 

method aims to remove the near-zero eigenvalues from the algebraic system’s stiffness matrices, 

and it simultaneously lowers their conditional number which, in turn, increases the computational 

efficiency substantially. An incremental deflation method is also utilized to avoid any unnecessary 

re-assembly of the deflation matrix during runtime. FEM solutions are recovered from the 

deflation space per CG iteration, and their convergence errors are checked based on prescribed 
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tolerance. By enforcing the same CG convergence criteria between FEM and deflation method, 

the macroscale ROM converges to the same displacement results as those of FEM without losing 

solution accuracy. Therefore, the local deformation gradients at each macroscale integration point 

are highly accurate for the sequent microscale analyses.  

For microscale, clustering aims to generate coarse computational grids, similar to the coarse-

graining process, where node-to-node interactions of FEM are condensed to the cluster interactions 

in the reduced cluster-based mesh. For the microscale equilibrium equations, utilization of more 

clusters results in a larger algebraic system with more eigenmodes and sophisticated deformations 

but with the expense of higher degrees of freedom and longer simulation time. In essence, the 

microscale clustering analysis targets to provide homogenized responses at macro-integration 

points by coarse-graining responses from micro-clusters. The efficiency of the microscopic ROM 

is much improved than FEM since degrees of freedom are dramatically reduced from large 

numbers of elements to a few clusters. Although it loses local accuracy as the solution variables 

are assumed uniform within each cluster, it is sufficient for the sake of homogenizations.  

Detailed steps of applying DCA in microscale simulations are summarized in Algorithm A.1. 

We note that following the construction of a clustering-based reduced mesh and stiffness matrix, 

microstructural local stress and strain fields are averaged at the centroid of each cluster. In other 

words, instead of computing distinct solution fields at different elements, close-by material points 

(in one cluster) are assumed to share the same solutions. We also stress that DCA in [17] is 

dependent on naïve position-based clustering, and its accuracy on localized solutions can be 

improved by the proposed adaptive clustering technique in this work.   

Algorithm A.1 Structure of the microscale cluster-based ROM 
1: procedure Solve for the homogenized microstructural responses at the 𝑖𝑡ℎ nonlinear increment 
2:       ▷Initialization 
3:       if 𝑖 ← 1, then 
4:             Generate FE mesh on the microstructure 
5:             Compute the microstructure geometric center 𝑥𝑐𝑒𝑛𝑡𝑒𝑟  from nodal coordinates 𝑥 
6:             Create node-based clusters via domain decomposition 
7:             Construct cluster-based reduced mesh 
8:             Initialize material properties with elastic material properties 
9:             Develop reduced stiffness matrix on cluster-based mesh 

10:       else 
11:             Update material properties from the last increment 
12:             Update the cluster-based constitutive model  
13:       end if 
14:       Read macroscopic deformation gradient 𝐅i(𝐗) 
15:       Compute incremental homogeneous displacements on FE mesh: 𝐮0

i (𝐱) = (𝐅i(𝐗) − 𝐈) ∙ (𝐱 − 𝐱0) 
16:       Project the homogeneous displacements from FE mesh to cluster-based mesh    
17:       ▷Starting Newton iterations to solve micro-equilibrium equations on the reduced mesh 
18:       Set Newton iteration convergence criteria 𝜖 = 10−3 
19:       for j← 0, 𝑁 do      ▷Loop over 𝑁 Newton iterations 
20:             Compute the microscale internal force vector 𝒇𝑗

𝑖𝑛𝑡(𝒖𝑗
𝑖(𝒙)) 

21:             Solve micro-equilibrium for microscopic displacement fluctuation �̃�𝑗(𝒙) 
22:             Update microscale displacements: 𝒖𝑗+1

𝑖 (𝒙) = 𝒖𝑗
𝑖(𝒙) +�̃�𝑗(𝒙) 

23:             Postprocess for microstructural stress and strain fields  
24:             ▷check for convergence 
25:             if iteration residual < 𝜖, then 
26:                    Compute homogenized stress tensor and material modulus 
28:                    return 
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29:             end if 
30:       end for  
40: end procedure 

Appendix B. Stabilized micro-damage model 

Strain softening causes severe convergence difficulty to implicit integration procedures, e.g., 

the Newton-Raphson method, see Section 2.4. Although our impl-exp integration scheme can 

successfully resolve softening-induced instability, the global stiffness matrix of the underlying 

algebraic system still needs to update the entries corresponding to damaged elements amid crack 

propagations. And as large numbers of elements enter damage realms, the updates are expensive. 

To further improve the microscale computational efficiency, we adopt the stabilized micro-damage 

model [31] which is reviewed in this section. 

We first demonstrate the classic progressive damage model in Figure B.1(a) where the damage 

manifests itself in both material moduli degradation and yield stress reduction. Specifically, as an 

arbitrary material point is subject to strain softening, its damaged yield stress (𝐒m
d ) and degraded 

modulus (ℂm
d ) are computed by projecting its undamaged reference stress (𝐒m

ref) and the intact 

elastic modulus (ℂel) by damage variables, see Section 2.2. We point out that this model focuses 

on the damage evolutions on a single integration point, and the subscript ‘m’ presents an arbitrary 

material point in a microstructure.    

 
Figure B.1 Comparison of damage models: (a) Classic progressive damage model at each integration point of RVE. 

(b) Stabilized micro-damage model computes the homogenized damage responses of the original RVE by introducing 

three additional reference RVEs that partially share their state variables. 

In contrast, the stabilized micro-damage model [31] aims to emulate an RVE’s softening by 

considering its overall response. Its advantage is that it projects the damage evolutions from plastic 

hardening by introducing three additional reference RVEs with partially shared state variables, and 

the whole procedure is simply based on pure implicit schemes without convergence issues. To 

further improve this method’s efficiency, we replace its implicit scheme with our AAF-IE for 

computing RVE’s effective damage responses. 

For an arbitrary RVE subject to strain softening, its homogenized stress-strain response can be 

demonstrated by the blue curve in Figure B.1(b) where its damaged homogenized stress 𝐒M
d  is 

computed as: 
d d el d pl

M M M M M M: : ( )= = −S E E E   (B.1) 
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where ℂM
d  is the homogenized elastic modulus of the damaged RVE, 𝐄M , 𝐄M

el  and 𝐄M
pl

 are the 

RVE’s effective total strain, elastic strain, and plastic strain, respectively, where the subscript ‘M’ 

indicates the associated variable is homogenized for overall macroscale property. The un-damaged 

stress of the first reference RVE can be computed by Equation (B.2), see the red curve in Figure 

B.1(b), where we assume the referenced RVE shares the same elastoplastic property as its original 

counterpart but in absence of damage. 

 1 el el el pl

M M M M M M: : ( )= = −S E E E   (B.2) 

where ℂM
el  is the shared effective elastic moduli of the original and the first reference RVEs. 

Combining Equation (B.1) and (B.2), the stress states on the two RVEs are related by: 
1 el d 1 d

M M M M: ( ) :−=S S   (B.3) 

Let homogenized stress of the first RVE (𝐒M
1 ) identical to that of the second RVE (𝐒M

2 ) which 

we assume to have the same material properties as the original RVE but it only deforms elastically, 

see the yellow curve in Figure B.1(b). The elastic macroscale strain of the second RVE is then 

computed by inverting the elastic modulus of Equation (B.2) as: 

 ( ) ( )
1 1

el el 1 el 2

M M M M M: :
− −

= =E S S   (B.4) 

where we assume microscale stress of the second RVE to satisfy elastic constitutive equation as: 

 2 el el

m m2:=S E   (B.5) 

where 𝐄m2
el  represents the local elastic strain at an arbitrary integration point in the second 

referenced RVE, and the homogenized elastic strain can be computed via the volume averaging 

process as: 

el el

M m2

1

| |
d


= 

 E E   (B.6) 

where Ω and |Ω| are the domain and volume of the original RVE which are shared among all 

reference RVEs. We assume the local value of the elastic strain (𝐄m2
el ) is shared between the second 

RVE and the third RVE, which only deforms elastically but its effective elastic modulus is identical 

to that of the damaged original RVE (ℂM
d ), see the green curve in Figure B.1(b). Under this 

assumption, the local stress of the third RVE (𝐒m
3 ) is computed by: 

 3 el el el el

m m m2 m m3(1 D ) : (1 D ) := − = −S E E   (B.7) 

where Dm is the local damage parameter at a microscale integration point. Its value is determined 

by the state variable from the first reference RVE. Towards the end, the elastic microscale stress 

in the third RVE is homogenized, which equals the effective stress of the original damaged RVE 

as: 

 d 3

M m

1

| |
d


= 

 S S   (B.8) 

In addition, an effective damage parameter can be defined by the homogenized stresses from 

the original and the first RVEs as: 

  

d 1

M M

M 1 1

M M

:
D 1

:
= −

S S

S S
  (B.9) 



Computational Mechanics, special issue on machine learning theories, modeling, and applications to computational 

materials science (2022), doi.org/10.1007/s00466-023-02299-7. 

 

43 

 

where DM  is the homogenized damage parameter that indicates the damage status of the 

macroscopic integration point associated with the studied RVE. Similar to the single-scale damage 

parameter defined in Section 2.2, DM ranges between [0,1]. The macro-point is considered fully 

ruptured when DM = 1, even if only parts of the elements in the associated RVE are damaged.  
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